您的位置:首页 > 运维架构 > Linux

linux内核驱动 之 module_init解析 (上)

2017-01-23 13:55 344 查看

linux内核驱动 之 module_init解析 (上)

转自:


http://blog.csdn.net/richard_liujh/article/details/45669207

写过linux驱动的程序猿都知道module_init() 这个函数。那么我们来了解一下module_init这个函数的具体功能和执行过程

在kernel源码目录中找到include\linux\init.h文件

[cpp]
view plain
copy
print?

<span style="font-family:SimSun;font-size:14px;">/** 
 * module_init() - driver initialization entry point 
 * @x: function to be run at kernel boot time or module insertion 
 *  
 * module_init() will either be called during do_initcalls() (if 
 * builtin) or at module insertion time (if a module).  There can only 
 * be one per module. 
 */  
#define module_init(x)  __initcall(x);</span>  

这里面就有对module_init 的定义,我们发现
module_init(x)是一个宏定义,那么_initcall(x)又是什么呢?

[cpp]
view plain
copy
print?

#define __initcall(fn) device_initcall(fn)  

感觉怪怪的,怎么这么多的宏??再解释这个之前,我们再来看看更多的宏定义吧


完整的宏定义如下:

__define_initcall:

[cpp]
view plain
copy
print?

/* initcalls are now grouped by functionality into separate  
 * subsections. Ordering inside the subsections is determined 
 * by link order.  
 * For backwards compatibility, initcall() puts the call in  
 * the device init subsection. 
 * 
 * The `id' arg to __define_initcall() is needed so that multiple initcalls 
 * can point at the same handler without causing duplicate-symbol build errors. 
 */  
  
#define __define_initcall(fn, id) \  
    static initcall_t __initcall_##fn##id __used \  
    __attribute__((__section__(".initcall" #id ".init"))) = fn  

initcalls:

[cpp]
view plain
copy
print?

</pre><pre name="code" class="cpp">/  
 * A "pure" initcall has no dependencies on anything else, and purely  
 * initializes variables that couldn't be statically initialized.  
 *  
 * This only exists for built-in code, not for modules.  
 * Keep main.c:initcall_level_names[] in sync.  
 */  
#define pure_initcall(fn)       __define_initcall(fn, 0)  
  
#define core_initcall(fn)       __define_initcall(fn, 1)  
#define core_initcall_sync(fn)      __define_initcall(fn, 1s)  
#define postcore_initcall(fn)       __define_initcall(fn, 2)  
#define postcore_initcall_sync(fn)  __define_initcall(fn, 2s)  
#define arch_initcall(fn)       __define_initcall(fn, 3)  
#define arch_initcall_sync(fn)      __define_initcall(fn, 3s)  
#define subsys_initcall(fn)     __define_initcall(fn, 4)  
#define subsys_initcall_sync(fn)    __define_initcall(fn, 4s)  
#define fs_initcall(fn)         __define_initcall(fn, 5)  
#define fs_initcall_sync(fn)        __define_initcall(fn, 5s)  
#define rootfs_initcall(fn)     __define_initcall(fn, rootfs)  
#define device_initcall(fn)     __define_initcall(fn, 6)  
#define device_initcall_sync(fn)    __define_initcall(fn, 6s)  
#define late_initcall(fn)       __define_initcall(fn, 7)  
#define late_initcall_sync(fn)      __define_initcall(fn, 7s)  
  
#define __initcall(fn) device_initcall(fn)  

Note:下面用xxx_initcall来代表pure_initcall,core_initcall、core_initcall_sync … …
我们可以看到非常多的xxx_initcall宏函数定义,他们都是通过__define_initcall 实现的。在__define_initcall里面包含了两个参数,一个是fn,另一个则是id。那么,这么多的宏又有何用??

我们来到init\main.c文件中可以找到函数do_initcalls

[cpp]
view plain
copy
print?

static void __init do_initcalls(void)  
{  
    int level;  
  
    for (level = 0; level < ARRAY_SIZE(initcall_levels) - 1; level++)  
        do_initcall_level(level);  
}  

很明显do_initcalls中有一个for循环,那么此循环就是按照优先级顺序执行一些函数的。那么问题又来了,执行哪些函数??我们看看do_initcalls这个名字。是不是initcall非常的眼熟?没错就是上面我们提到过的宏定义xxx_initcall里面就有initcall。
所以,我们先来解释一下这些宏有什么用

还是从我们最熟悉的地方module_init(fn)开始说起,其中fn是module_init的参数,fn是一个函数指针(函数名)。

module_init(fn)---> __initcall(fn) ---> device_initcall(fn) ---> __define_initcall(fn, 6)

所以当我们写module_init(fn)最终我们可以简化成以下内容(假设module_init的参数为test_init)

module_init(test_init) ---> __define_initcall(test_init, 6)

[cpp]
view plain
copy
print?

#define __define_initcall(fn, id) \  
    static initcall_t __initcall_##fn##id __used \  
    __attribute__((__section__(".initcall" #id ".init"))) = fn  

简单补充:

符号作用举例
##
“##”符号可以

是连接的意思
例如 __initcall_##fn##id 为__initcall_fnid

那么,fn = test_init,id = 6时,__initcall_##fn##id 为 __initcall_test_init6
#“#”符号可以

是字符串化的意思
例如
#id 为 “id”,id=6 时,#id 为“6”
通过上面的定义,我们把module_init(test_init)给替换如下内容

static initcall_t __initcall_test6 __used __attribute__((__section__(".initcall""6" ".init"))) =test_init
是不是看起来更加头疼

,那么我们说简单一点。通过__attribute__(__section__)设置函数属性,也就是将test_init放在.initcall6.init段中。这个段在哪用?这就要涉及到链接脚本了。
大家可以到kernel目录arch中,根据自己的处理器平台找到对应的链接脚本。例如我现在的平台是君正m200(mips架构),可能大部分是arm架构。
在arch/mips/kernel/vmlinux.lds这个链接脚本里面有如下一段代码

[python]
view plain
copy
print?

__init_begin = .;  
 . = ALIGN(4096); .init.text : AT(ADDR(.init.text) - 0) { _sinittext = .; *(.init.text) *(.cpuinit.text) *(.meminit.text) _einittext = .; }  
 .init.data : AT(ADDR(.init.data) - 0) { *(.init.data) *(.cpuinit.data) *(.meminit.data) *(.init.rodata) *(.cpuinit.rodata) *(.meminit.rodata) . = ALIGN(32); __dtb_start = .; *(.dtb.init.rodata) __dtb_end = .; . = ALIGN(16); __setup_start = .; *(.init.setup) __setup_end = .; __initcall_start = .; *(.initcallearly.init) __initcall0_start = .; *(.initcall0.init) *(.initcall0s.init) __initcall1_start = .; *(.initcall1.init) *(.initcall1s.init) __initcall2_start = .; *(.initcall2.init) *(.initcall2s.init) __initcall3_start = .; *(.initcall3.init) *(.initcall3s.init) __initcall4_start = .; *(.initcall4.init) *(.initcall4s.init) __initcall5_start = .; *(.initcall5.init) *(.initcall5s.init) __initcallrootfs_start = .; *(.initcallrootfs.init) *(.initcallrootfss.init) __initcall6_start = .; *(.initcall6.init) *(.initcall6s.init) __initcall7_start = .; *(.initcall7.init) *(.initcall7s.init) __initcall_end = .; __con_initcall_start = .; *(.con_initcall.init) __con_initcall_end = .; __security_initcall_start = .; *(.security_initcall.init) __security_initcall_end = .; . = ALIGN(4); __initramfs_start = .; *(.init.ramfs) . = ALIGN(8); *(.init.ramfs.info) }  
 . = ALIGN(4);  

当然,关于链接脚本又有很多多动要讲。所以现在我们不关心里面的具体含义,我们可以观察到上面有这些字符串使我们比较熟悉的:__initcall6_start = .; *(.initcall6.init) *(.initcall6s.init)。链接脚本里的东西看似很乱很难,其实是非常有逻辑有规律可循的,我们来简单解释下面一行的代码作用

[cpp]
view plain
copy
print?

__initcall6_start = .; *(.initcall6.init) *(.initcall6s.init)   

其中__initcall6_start是一个符号,链接器用到的。__initcall6_start = .; ,其中的 '.'符号是对当前地址的一个引用,也就说把当前的地址给了符号__initcall6_start, *(.initcall6.init)
*(.initcall6s.init) 的意思是所有的.initcall6.init段和.initcall6s.init段的内容从__initcall6_start为起始地址开始链接。
.initcall0.init
.initcall0s.init .initcall1.init .initcall1s.init
…… .initcall7.init .initcall7s.init

上面的内容都出现在了链接脚本中,而0,0s,1,1s,2,2s …… 6,6s,7,7s 有没有觉得在哪里见过? 我们回顾一下initcalls里面的定义

[cpp]
view plain
copy
print?

#define pure_initcall(fn)       __define_initcall(fn, 0)  
  
#define core_initcall(fn)       __define_initcall(fn, 1)  
#define core_initcall_sync(fn)      __define_initcall(fn, 1s)  
#define postcore_initcall(fn)       __define_initcall(fn, 2)  
#define postcore_initcall_sync(fn)  __define_initcall(fn, 2s)  
#define arch_initcall(fn)       __define_initcall(fn, 3)  
#define arch_initcall_sync(fn)      __define_initcall(fn, 3s)  
#define subsys_initcall(fn)     __define_initcall(fn, 4)  
#define subsys_initcall_sync(fn)    __define_initcall(fn, 4s)  
#define fs_initcall(fn)         __define_initcall(fn, 5)  
#define fs_initcall_sync(fn)        __define_initcall(fn, 5s)  
#define rootfs_initcall(fn)     __define_initcall(fn, rootfs)  
#define device_initcall(fn)     __define_initcall(fn, 6)  
#define device_initcall_sync(fn)    __define_initcall(fn, 6s)  
#define late_initcall(fn)       __define_initcall(fn, 7)  
#define late_initcall_sync(fn)      __define_initcall(fn, 7s)  

这里面就有0,0s,1,1s,2,2s …… 6,6s,7,7s,也就是__define_initcall(fn, id)中的第二个参数 id。很显然这个id的值不是我们在调用module_init的时候传过去的。数字id 0~7代表的是不同的优先级(0最高,module_init对应的优先级为6,所以一般我们注册的驱动程序优先级为6),链接脚本里面根据我们注册不同的id,将我们的函数fn放入对应的地址里面。根据上面的分析,test_init放在.initcall6.init段中。
在kernel启动过程中,会调用do_initcalls函数一次调用我们通过xxx_initcall注册的各种函数,优先级高的先执行。所以我们通过module_init注册的函数在kernel启动的时候会被顺序执行。
由于时间原因,只能把具体执行过程放在linux内核很吊之
module_init解析 (下)再分析了。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: