您的位置:首页 > 其它

【第十二周 项目4-利用遍历思想求解图问题(1-5)】

2016-11-17 11:12 99 查看
问题及代码:

/*    

* Copyright (c)2015级,烟台大学 计算机与控制工程学院    

* All rights reserved.    

* 文件名称:项目4.cpp    

* 作    者:胡馨月    

* 完成日期:2016年11月17日    

* 版 本 号:v1.0     

*问题描述:假设图G采用邻接表存储,分别设计实现以下要求的算法,要求用区别于示例中的图进行多次测试,通过观察输出值,掌握相关问题的处理方法。

  (1)设计一个算法,判断顶点u到v是否有简单路径

  (2)设计一个算法输出图G中从顶点u到v的一条简单路径(设计测试图时,保证图G中从顶点u到v至少有一条简单路径)。

  (3)输出从顶点u到v的所有简单路径。

  (4)输出图G中从顶点u到v的长度为s的所有简单路径。

  (5)求图中通过某顶点k的所有简单回路(若存在)   

*输入描述:无    

*程序输出:测试数据    

*/ 

程序中graph.h是图存储结构的算法库中的头文件,详见图算法库

1、是否有简单路径? 
问题:假设图G采用邻接表存储,设计一个算法,判断顶点u到v是否有简单路径。


测试图如下:





源文件main.cpp代码:

#include "graph.h"
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void ExistPath(ALGraph *G,int u,int v, bool &has)
{
int w;
ArcNode *p;
visited[u]=1;
if(u==v)
{
has=true;
return;
}
p=G->adjlist[u].firstarc;
while (p!=NULL)
{
w=p->adjvex;
if (visited[w]==0)
ExistPath(G,w,v,has);
p=p->nextarc;
}
}

void HasPath(ALGraph *G,int u,int v)
{
int i;
bool flag = false;
for (i=0; i<G->n; i++)
visited[i]=0; //访问标志数组初始化
ExistPath(G,u,v,flag);
printf(" 从 %d 到 %d ", u, v);
if(flag)
printf("有简单路径\n");
else
printf("无简单路径\n");
}

int main()
{
ALGraph *G;
int A[5][5]=
{
{0,0,0,0,0},
{0,0,1,0,0},
{0,0,0,1,1},
{0,0,0,0,0},
{1,0,0,1,0},
};  //请画出对应的有向图
ArrayToList(A[0], 5, G);
HasPath(G, 1, 0);
HasPath(G, 4, 1);
return 0;
}


运行结果:



2、输出简单路径 
问题:假设图G采用邻接表存储,设计一个算法输出图G中从顶点u到v的一条简单路径(假设图G中从顶点u到v至少有一条简单路径)。

测试图如下:






源文件main.cpp代码:

#include "graph.h"
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void FindAPath(ALGraph *G,int u,int v,int path[],int d)
{
//d表示path中的路径长度,初始为-1
int w,i;
ArcNode *p;
visited[u]=1;
d++;
path[d]=u;  //路径长度d增1,顶点u加入到路径中
if (u==v)   //找到一条路径后输出并返回
{
printf("一条简单路径为:");
for (i=0; i<=d; i++)
printf("%d ",path[i]);
printf("\n");
return;         //找到一条路径后返回
}
p=G->adjlist[u].firstarc;  //p指向顶点u的第一个相邻点
while (p!=NULL)
{
w=p->adjvex;    //相邻点的编号为w
if (visited[w]==0)
FindAPath(G,w,v,path,d);
p=p->nextarc;   //p指向顶点u的下一个相邻点
}
}

void APath(ALGraph *G,int u,int v)
{
int i;
int path[MAXV];
for (i=0; i<G->n; i++)
visited[i]=0; //访问标志数组初始化
FindAPath(G,u,v,path,-1);  //d初值为-1,调用时d++,即变成了0
}

int main()
{

ALGraph *G;
int A[5][5]=
{
{0,0,0,0,0},
{0,0,1,0,0},
{0,0,0,1,1},
{0,0,0,0,0},
{1,0,0,1,0},
};  //请画出对应的有向图
ArrayToList(A[0], 5, G);
APath(G, 1, 0);
APath(G, 4, 1);
return 0;
}


运行结果:



3、输出所有路径 
问题:输出从顶点u到v的所有简单路径。

测试图如下:



源文件main.cpp代码:

#include "graph.h"
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void FindPaths(ALGraph *G,int u,int v,int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
int w,i;
ArcNode *p;
visited[u]=1;
d++;            //路径长度增1
path[d]=u;              //将当前顶点添加到路径中
if (u==v && d>1)            //输出一条路径
{
printf("  ");
for (i=0; i<=d; i++)
printf("%d ",path[i]);
printf("\n");
}
p=G->adjlist[u].firstarc; //p指向u的第一条边
while(p!=NULL)
{
w=p->adjvex;     //w为u的邻接顶点
if (visited[w]==0)      //若顶点未标记访问,则递归访问之
FindPaths(G,w,v,path,d);
p=p->nextarc; //找u的下一个邻接顶点
}
visited[u]=0;   //恢复环境
}

void DispPaths(ALGraph *G,int u,int v)
{
int i;
int path[MAXV];
for (i=0; i<G->n; i++)
visited[i]=0; //访问标志数组初始化
printf("从%d到%d的所有路径:\n",u,v);
FindPaths(G,u,v,path,-1);
printf("\n");
}

int main()
{
ALGraph *G;
int A[5][5]=
{
{0,1,0,1,0},
{1,0,1,0,0},
{0,1,0,1,1},
{1,0,1,0,1},
{0,0,1,1,0}
};  //请画出对应的有向图
ArrayToList(A[0], 5, G);
DispPaths(G, 1, 4);
return 0;
}


运行结果:



4、输出一些简单回路 
问题:输出图G中从顶点u到v的长度为s的所有简单路径。

测试图如下:



源文件main.cpp代码:

#include "graph.h"
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void SomePaths(ALGraph *G,int u,int v,int s, int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
int w,i;
ArcNode *p;
visited[u]=1;
d++;            //路径长度增1
path[d]=u;              //将当前顶点添加到路径中
if (u==v && d==s)           //输出一条路径
{
printf("  ");
for (i=0; i<=d; i++)
printf("%d ",path[i]);
printf("\n");
}
p=G->adjlist[u].firstarc; //p指向u的第一条边
while(p!=NULL)
{
w=p->adjvex;     //w为u的邻接顶点
if (visited[w]==0)      //若顶点未标记访问,则递归访问之
SomePaths(G,w,v,s,path,d);
p=p->nextarc; //找u的下一个邻接顶点
}
visited[u]=0;   //恢复环境
}

void DispSomePaths(ALGraph *G,int u,int v, int s)
{
int i;
int path[MAXV];
for (i=0; i<G->n; i++)
visited[i]=0; //访问标志数组初始化
printf("从%d到%d长为%d的路径:\n",u,v,s);
SomePaths(G,u,v,s,path,-1);
printf("\n");
}

int main()
{
ALGraph *G;
int A[5][5]=
{
{0,1,0,1,0},
{1,0,1,0,0},
{0,1,0,1,1},
{1,0,1,0,1},
{0,0,1,1,0}
};  //请画出对应的有向图
ArrayToList(A[0], 5, G);
DispSomePaths(G, 1, 4, 3);
return 0;
}


运行结果:
 



 

5、输出通过一个节点的所有简单回路 

问题:求图中通过某顶点k的所有简单回路(若存在)

测试图如下:



源文件main.cpp代码:

#include "graph.h"
int visited[MAXV];       //全局变量
void DFSPath(ALGraph *G,int u,int v,int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
int w,i;
ArcNode *p;
visited[u]=1;
d++;
path[d]=u;
p=G->adjlist[u].firstarc;   //p指向顶点u的第一条边
while (p!=NULL)
{
w=p->adjvex;            //w为顶点u的相邻点
if (w==v && d>0)        //找到一个回路,输出之
{
printf("  ");
for (i=0; i<=d; i++)
printf("%d ",path[i]);
printf("%d \n",v);
}
if (visited[w]==0)          //w未访问,则递归访问之
DFSPath(G,w,v,path,d);
p=p->nextarc;       //找u的下一个邻接顶点
}
visited[u]=0;           //恢复环境:使该顶点可重新使用
}

void FindCyclePath(ALGraph *G,int k)
//输出经过顶点k的所有回路
{
int path[MAXV],i;
for (i=0; i<G->n; i++)
visited[i]=0; //访问标志数组初始化
printf("经过顶点%d的所有回路\n",k);
DFSPath(G,k,k,path,-1);
printf("\n");
}

int main()
{
ALGraph *G;
int A[5][5]=
{
{0,1,1,0,0},
{0,0,1,0,0},
{0,0,0,1,1},
{0,0,0,0,1},
{1,0,0,0,0}
};  //请画出对应的有向图
ArrayToList(A[0], 5, G);
FindCyclePath(G, 0);
return 0;
}


运行结果:
 



知识点总结:

利用深度优先遍历思想解决问题,从顶点开始,以纵向方式依次访问各个顶点。

 
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: