您的位置:首页 > 编程语言 > Python开发

python基础之迭代器、装饰器、软件开发目录结构规范

2016-11-07 10:46 274 查看

生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的

[]
改成
()
,就创建了一个generator:

创建

L
g
的区别仅在于最外层的
[]
()
L
是一个list,而
g
是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过

next()
函数获得generator的下一个返回值:

我们讲过,generator保存的是算法,每次调用

next(g)
,就计算出
g
的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出
StopIteration
的错误。

当然,上面这种不断调用

next(g)
实在是太变态了,正确的方法是使用
for
循环,因为generator也是可迭代对象:

 

所以,我们创建了一个generator后,基本上永远不会调用

next()
,而是通过
for
循环来迭代它,并且不需要关心
StopIteration
的错误。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的

for
循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

注意,赋值语句:

相当于:

但不必显式写出临时变量t就可以赋值。

上面的函数可以输出斐波那契数列的前N个数:


仔细观察,可以看出,

fib
函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把

fib
函数变成generator,只需要把
print(b)
改为
yield b
就可以了:

def fib(max):
n,a,b = 0,0,1

while n < max:
#print(b)
yield  b
a,b = b,a+b

n += 1

return 'done'

 这就是定义generator的另一种方法。如果一个函数定义中包含

yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator:

>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>

 这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到

return
语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用
next()
的时候执行,遇到
yield
语句返回,再次执行时从上次返回的
yield
语句处继续执行。

data = fib(10)
print(data)

print(data.__next__())
print(data.__next__())
print("干点别的事")
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__())

#输出
<generator object fib at 0x101be02b0>
1
干点别的事
3
8

 

在上面fib
的例子,我们在循环过程中不断调用
yield
,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator后,我们基本上从来不会用

next()
来获取下一个返回值,而是直接使用
for
循环来迭代:

>>> for n in fib(6):
...     print(n)
...
1
3
8

 但是用

for
循环调用generator时,发现拿不到generator的
return
语句的返回值。如果想要拿到返回值,必须捕获
StopIteration
错误,返回值包含在
StopIteration
value
中:

>>> g = fib(6)
>>> while True:
...     try:
...         x = next(g)
...         print('g:', x)
...     except StopIteration as e:
...         print('Generator return value:', e.value)
...         break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done

关于如何捕获错误,后面的错误处理还会详细讲解。

还可通过yield实现在单线程的情况下实现并发运算的效果  

 

#_*_coding:utf-8_*_
__author__ = 'Alex Li'

import time
def consumer(name):
print("%s 准备吃包子啦!" %name)
while True:
baozi = yield

print("包子[%s]来了,被[%s]吃了!" %(baozi,name))

def producer(name):
c = consumer('A')
c2 = consumer('B')
c.__next__()
c2.__next__()
print("老子开始准备做包子啦!")
for i in range(10):
time.sleep(1)
print("做了2个包子!")
c.send(i)
c2.send(i)

producer("alex")

通过生成器实现协程并行运算

 

迭代器

我们已经知道,可以直接作用于

for
循环的数据类型有以下几种:

一类是集合数据类型,如

list
tuple
dict
set
str
等;

一类是

generator
,包括生成器和带
yield
的generator function。

这些可以直接作用于

for
循环的对象统称为可迭代对象:
Iterable

可以使用

isinstance()
判断一个对象是否是
Iterable
对象:

 

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

 

而生成器不但可以作用于

for
循环,还可以被
next()
函数不断调用并返回下一个值,直到最后抛出
StopIteration
错误表示无法继续返回下一个值了。

*可以被

next()
函数调用并不断返回下一个值的对象称为迭代器:
Iterator

可以使用

isinstance()
判断一个对象是否是
Iterator
对象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

 

生成器都是

Iterator
对象,但
list
dict
str
虽然是
Iterable
,却不是
Iterator

list
dict
str
Iterable
变成
Iterator
可以使用
iter()
函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

 

你可能会问,为什么

list
dict
str
等数据类型不是
Iterator

这是因为Python的

Iterator
对象表示的是一个数据流,Iterator对象可以被
next()
函数调用并不断返回下一个数据,直到没有数据时抛出
StopIteration
错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过
next()
函数实现按需计算下一个数据,所以
Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

 

小结

凡是可作用于

for
循环的对象都是
Iterable
类型;

凡是可作用于

next()
函数的对象都是
Iterator
类型,它们表示一个惰性计算的序列;

集合数据类型如

list
dict
str
等是
Iterable
但不是
Iterator
,不过可以通过
iter()
函数获得一个
Iterator
对象。

Python的

for
循环本质上就是通过不断调用
next()
函数实现的,例如:

for x in [1, 2, 3, 4, 5]:
pass

 实际上完全等价于:

# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
try:
# 获得下一个值:
x = next(it)
except StopIteration:
# 遇到StopIteration就退出循环
break

 

json & pickle 模块

用于序列化的两个模块

  • json,用于字符串 和 python数据类型间进行转换
  • pickle,用于python特有的类型 和 python的数据类型间进行转换

Json模块提供了四个功能:dumps、dump、loads、load

pickle模块提供了四个功能:dumps、dump、loads、load

 

 

python软件目录结构开发规范

Python语言规范

Python风格规范

为什么要设计好目录结构

"设计项目目录结构",就和"代码编码风格"一样,属于个人风格问题。对于这种风格上的规范,一直都存在两种态度:

  1. 一类同学认为,这种个人风格问题"无关紧要"。理由是能让程序work就好,风格问题根本不是问题。
  2. 另一类同学认为,规范化能更好的控制程序结构,让程序具有更高的可读性。

我是比较偏向于后者的,因为我是前一类同学思想行为下的直接受害者。我曾经维护过一个非常不好读的项目,其实现的逻辑并不复杂,但是却耗费了我非常长的时间去理解它想表达的意思。从此我个人对于提高项目可读性、可维护性的要求就很高了。"项目目录结构"其实也是属于"可读性和可维护性"的范畴,我们设计一个层次清晰的目录结构,就是为了达到以下两点:

  1. 可读性高: 不熟悉这个项目的代码的人,一眼就能看懂目录结构,知道程序启动脚本是哪个,测试目录在哪儿,配置文件在哪儿等等。从而非常快速的了解这个项目。
  2. 可维护性高: 定义好组织规则后,维护者就能很明确地知道,新增的哪个文件和代码应该放在什么目录之下。这个好处是,随着时间的推移,代码/配置的规模增加,项目结构不会混乱,仍然能够组织良好。

所以,我认为,保持一个层次清晰的目录结构是有必要的。更何况组织一个良好的工程目录,其实是一件很简单的事儿。

目录组织方式

关于如何组织一个较好的Python工程目录结构,已经有一些得到了共识的目录结构。在Stackoverflow的这个问题上,能看到大家对Python目录结构的讨论。

这里面说的已经很好了,我也不打算重新造轮子列举各种不同的方式,这里面我说一下我的理解和体会。

假设你的项目名为foo, 我比较建议的最方便快捷目录结构这样就足够了:

Foo/
|-- bin/
|   |-- foo
|
|-- foo/
|   |-- tests/
|   |   |-- __init__.py
|   |   |-- test_main.py
|   |
|   |-- __init__.py
|   |-- main.py
|
|-- docs/
|   |-- conf.py
|   |-- abc.rst
|
|-- setup.py
|-- requirements.txt
|-- README

简要解释一下:

  1. bin/
    : 存放项目的一些可执行文件,当然你可以起名
    script/
    之类的也行。
  2. foo/
    : 存放项目的所有源代码。(1) 源代码中的所有模块、包都应该放在此目录。不要置于顶层目录。(2) 其子目录
    tests/
    存放单元测试代码; (3) 程序的入口最好命名为
    main.py
  3. docs/
    : 存放一些文档。
  4. setup.py
    : 安装、部署、打包的脚本。
  5. requirements.txt
    : 存放软件依赖的外部Python包列表。
  6. README
    : 项目说明文件。

除此之外,有一些方案给出了更加多的内容。比如

LICENSE.txt
,
ChangeLog.txt
文件等,我没有列在这里,因为这些东西主要是项目开源的时候需要用到。如果你想写一个开源软件,目录该如何组织,可以参考这篇文章

下面,再简单讲一下我对这些目录的理解和个人要求吧。

关于README的内容

这个我觉得是每个项目都应该有的一个文件,目的是能简要描述该项目的信息,让读者快速了解这个项目。

它需要说明以下几个事项:

  1. 软件定位,软件的基本功能。
  2. 运行代码的方法: 安装环境、启动命令等。
  3. 简要的使用说明。
  4. 代码目录结构说明,更详细点可以说明软件的基本原理。
  5. 常见问题说明。

我觉得有以上几点是比较好的一个

README
。在软件开发初期,由于开发过程中以上内容可能不明确或者发生变化,并不是一定要在一开始就将所有信息都补全。但是在项目完结的时候,是需要撰写这样的一个文档的。

可以参考Redis源码中Readme的写法,这里面简洁但是清晰的描述了Redis功能和源码结构。

关于requirements.txt和setup.py

setup.py

一般来说,用

setup.py
来管理代码的打包、安装、部署问题。业界标准的写法是用Python流行的打包工具setuptools来管理这些事情。这种方式普遍应用于开源项目中。不过这里的核心思想不是用标准化的工具来解决这些问题,而是说,一个项目一定要有一个安装部署工具,能快速便捷的在一台新机器上将环境装好、代码部署好和将程序运行起来。

这个我是踩过坑的。

我刚开始接触Python写项目的时候,安装环境、部署代码、运行程序这个过程全是手动完成,遇到过以下问题:

  1. 安装环境时经常忘了最近又添加了一个新的Python包,结果一到线上运行,程序就出错了。
  2. Python包的版本依赖问题,有时候我们程序中使用的是一个版本的Python包,但是官方的已经是最新的包了,通过手动安装就可能装错了。
  3. 如果依赖的包很多的话,一个一个安装这些依赖是很费时的事情。
  4. 新同学开始写项目的时候,将程序跑起来非常麻烦,因为可能经常忘了要怎么安装各种依赖。

setup.py
可以将这些事情自动化起来,提高效率、减少出错的概率。"复杂的东西自动化,能自动化的东西一定要自动化。"是一个非常好的习惯。

setuptools的文档比较庞大,刚接触的话,可能不太好找到切入点。学习技术的方式就是看他人是怎么用的,可以参考一下Python的一个Web框架,flask是如何写的: setup.py

当然,简单点自己写个安装脚本(

deploy.sh
)替代
setup.py
也未尝不可。

requirements.txt

这个文件存在的目的是:

  1. 方便开发者维护软件的包依赖。将开发过程中新增的包添加进这个列表中,避免在
    setup.py
    安装依赖时漏掉软件包。
  2. 方便读者明确项目使用了哪些Python包。

这个文件的格式是每一行包含一个包依赖的说明,通常是

flask>=0.10
这种格式,要求是这个格式能被
pip
识别,这样就可以简单的通过
pip install -r requirements.txt
来把所有Python包依赖都装好了。具体格式说明: 点这里

关于配置文件的使用方法

注意,在上面的目录结构中,没有将

conf.py
放在源码目录下,而是放在
docs/
目录下。

很多项目对配置文件的使用做法是:

  1. 配置文件写在一个或多个python文件中,比如此处的conf.py。
  2. 项目中哪个模块用到这个配置文件就直接通过
    import conf
    这种形式来在代码中使用配置。

这种做法我不太赞同:

  1. 这让单元测试变得困难(因为模块内部依赖了外部配置)
  2. 另一方面配置文件作为用户控制程序的接口,应当可以由用户自由指定该文件的路径。
  3. 程序组件可复用性太差,因为这种贯穿所有模块的代码硬编码方式,使得大部分模块都依赖
    conf.py
    这个文件。

所以,我认为配置的使用,更好的方式是,

  1. 模块的配置都是可以灵活配置的,不受外部配置文件的影响。
  2. 程序的配置也是可以灵活控制的。

能够佐证这个思想的是,用过nginx和mysql的同学都知道,nginx、mysql这些程序都可以自由的指定用户配置。

所以,不应当在代码中直接

import conf
来使用配置文件。上面目录结构中的
conf.py
,是给出的一个配置样例,不是在写死在程序中直接引用的配置文件。可以通过给
main.py
启动参数指定配置路径的方式来让程序读取配置内容。当然,这里的
conf.py
你可以换个类似的名字,比如
settings.py
。或者你也可以使用其他格式的内容来编写配置文件,比如
settings.yaml
之类的。

对于文档的态度

目录结构中有设

docs/
这个目录,用于存放代码文档。实际过程中,据我观察,80%以上的程序员都没有单独写文档的习惯。一般文档写得比较好的,都是一些开源项目。

在普通的项目中,确实没必要写非常详细的文档,我更赞同的是现在的一种流行的风格: "在代码中写文档"。即在写代码的时候,在代码文件里把软件/模块的简要用法写明。简单有用。

小结

Foo/
|-- bin/
|   |-- foo
|
|-- foo/
|   |-- tests/
|   |   |-- __init__.py
|   |   |-- test_main.py
|   |
|   |-- __init__.py
|   |-- main.py
|
|-- docs/
|   |-- conf.py
|   |-- abc.rst
|
|-- setup.py
|-- requirements.txt
|-- README

另外,多翻翻经典项目的源码是有好处的,比如在python web开发中比较有名的框架: flask, tornado, django 都是类似的结构。

(PS. 如果有疑问、不同意看法欢迎在评论区讨论;觉得我写得还行,也可以手动点个赞支持一下~)

同系列更多其他的文章: 《创建高质量的Python项目》

插曲:代码风格

若要编写更长更复杂的 Python 代码,是时候谈一谈 编码风格了 。大部分语言都可以有多种(比如更简洁,更格式化)写法,有些写法可以更易读。让你的代码更具可读性,而良好的编码风格对此有很大的帮助。

对Python, PEP 8 已经成为多数项目遵循的代码风格指南;它推动了一种非常易于阅读且赏心悦目的编码风格。每个Python开发者都应该找个时间读一下; 以下是从中提取出来的最重要的一些点:

  • 使用 4 个空格的缩进,不要使用制表符。

    4 个空格是小缩进(允许更深的嵌套)和大缩进(易于阅读)之间很好的折衷。制表符会引起混乱,最好弃用。

  • 折行以确保其不会超过 79 个字符。

    这有助于小显示器用户阅读,也可以让大显示器能并排显示几个代码文件。

  • 使用空行分隔函数和类,以及函数内的大块代码。

  • 如果可能,注释独占一行。

  • 使用文档字符串。

  • 在操作符两边和逗号之后加空格, 但不要直接在左括号后和右括号前加: 

    a = f(1, 2) + g(3, 4)
    .

  • 类和函数的命名风格要一致;传统上使用 

    CamelCase
     驼峰风格命名类 而用 
    lower_case_with_underscores
    (小写字母加下划线)命名函数和方法。方法的第一个参数名称应为 
    self
     (查看 初识类 以获得更多有关类和方法的规则)。

  • 如果您的代码要在国际环境中使用,不要使用花哨的编码。Python 默认的 UTF-8 或者 ASCII 在任何时候都是最好的选择。

  • 同样,只要存在哪怕一丁点可能有使用另一种不同语言的人会阅读或维护你的代码,就不要在标识符中使用非 ASCII 字符。

 

脚注

[1] 事实上,  按对象引用传递   可能是更恰当的说法,因为如果传递了一个可变对象,调用函数将看到任何被调用函数对该可变对象做出的改变(比如添加到列表中的元素)

文档字符串

Python有一种独一无二的的注释方式: 使用文档字符串. 文档字符串是包, 模块, 类或函数里的第一个语句. 这些字符串可以通过对象的__doc__成员被自动提取, 并且被pydoc所用. (你可以在你的模块上运行pydoc试一把, 看看它长什么样). 我们对文档字符串的惯例是使用三重双引号”“”( PEP-257 ). 一个文档字符串应该这样组织: 首先是一行以句号, 问号或惊叹号结尾的概述(或者该文档字符串单纯只有一行). 接着是一个空行. 接着是文档字符串剩下的部分, 它应该与文档字符串的第一行的第一个引号对齐. 下面有更多文档字符串的格式化规范.

模块

每个文件应该包含一个许可样板. 根据项目使用的许可(例如, Apache 2.0, BSD, LGPL, GPL), 选择合适的样板.

函数和方法

下文所指的函数,包括函数, 方法, 以及生成器.

一个函数必须要有文档字符串, 除非它满足以下条件:

  1. 外部不可见
  2. 非常短小
  3. 简单明了

文档字符串应该包含函数做什么, 以及输入和输出的详细描述. 通常, 不应该描述”怎么做”, 除非是一些复杂的算法. 文档字符串应该提供足够的信息, 当别人编写代码调用该函数时, 他不需要看一行代码, 只要看文档字符串就可以了. 对于复杂的代码, 在代码旁边加注释会比使用文档字符串更有意义.

关于函数的几个方面应该在特定的小节中进行描述记录, 这几个方面如下文所述. 每节应该以一个标题行开始. 标题行以冒号结尾. 除标题行外, 节的其他内容应被缩进2个空格.

 

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: