您的位置:首页 > 其它

【数学】XMU 1593 找数字

2016-08-16 23:35 127 查看
题目链接:
  http://acm.xmu.edu.cn/JudgeOnline/problem.php?id=1593

题目大意

  T组数据,n个数,只有一种出现q次,其余的出现p次。(1<=T<=100,1<=n<=107,1<p,q<200,gcd(p,q)=1)

题目思路:

  【数学】

  我也不知道这题算不算数学类问题,总之我是不会做的。看了题解还是有些懵逼。

  还是orz一下学长吧

  

学长的题解:



我们想象一个简化版的:有n个数字,其中有1个数会出现1次,其余数都会出现两次,求出现1次的这个数是多少?
因为x^x=0,所以对所有数取亦或^就行了。
这题也是同样的思路,我们希望达到这样一种状态:对出现p次的数进行操作后,会抵消为0,所以我们想到了p进制:举个例子p=7,数字11出现了7次,11(十进制)=14(7进制),然后按位分离计算——对所有数转为p进制后,各个位分离计算。
14(7进制)分离开,得到1和4,于是有4(7进制)*7=40,做无进位加法,就是0。
所以,一个数转为p进制后,按位分离开,然后做p次无进位加法,就是0。
上面就是核心思路。至于gcd(p,q)=1方便之后还原出答案。
其他自己想了。


 

  f[i]表示数字i不进位加了q次完在p进制中为f[i],p和q互质所以f[i]和i一一对应(证明不会。。)

  只需要通过得到的答案中的数倒推回去就可以知道原来的数是几,之后还原回10进制答案

//
//by coolxxx
//
#include<iostream>
#include<algorithm>
#include<string>
#include<iomanip>
#include<memory.h>
#include<time.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<stdbool.h>
#include<math.h>
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define abs(a) ((a)>0?(a):(-(a)))
#define lowbit(a) (a&(-a))
#define sqr(a) ((a)*(a))
#define swap(a,b) ((a)^=(b),(b)^=(a),(a)^=(b))
#define eps 1e-8
#define J 10
#define MAX 0x7f7f7f7f
#define PI 3.1415926535897
#define inf 10000000
#define N 104
using namespace std;
int n,m,lll,ans,cas;
int p,q;
int mi
,a
,f
;
void work(int x)
{
int i,j;
for(i=m;i>=0 && x;i--)
{
if(x>=mi[i])
{
a[i]+=x/mi[i];
x%=mi[i];
a[i]%=p;
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
//	freopen("1.txt","r",stdin);
//	freopen("2.txt","w",stdout);
#endif
int i,j,k,l;
//	while(~scanf("%s",s1))
//	while(~scanf("%d",&n))
for(scanf("%d",&cas),l=1;l<=cas;l++)
{
memset(a,0,sizeof(a));
scanf("%d%d%d",&n,&p,&q);
for(i=0;i<p;i++)f[(i*q)%p]=i;
for(i=1,mi[0]=1;mi[i-1]<inf;i++)mi[i]=mi[i-1]*p;
m=i-1;
for(i=1;i<=n;i++)
{
scanf("%d",&k);
work(k);
}
for(j=0,i=0;i<=m;i++)
j+=f[a[i]]*mi[i];
printf("Case %d:\n%d\n",l,j);
}
return 0;
}

/*
//

//
*/
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: