您的位置:首页 > 其它

kubernetes 1.3 的安装和集群环境部署

2016-07-29 00:02 921 查看

简介:

Docker:是一个开源的应用容器引擎,可以为应用创建一个轻量级的、可移植的、自给自足的容器。

Kubernetes:由Google开源的Docker容器集群管理系统,为容器化的应用提供资源调度、部署运行、服务发现、扩容缩容等功能。

Etcd:由CoreOS开发并维护的一个高可用的键值存储系统,主要用于共享配置和服务发现。

Flannel:Flannel是 CoreOS 团队针对 Kubernetes 设计的一个覆盖网络(Overlay Network)工具,其目的在于帮助每一个使用 Kuberentes 的 CoreOS 主机拥有一个完整的子网。

目标:

本文主要介绍Kunbernetes(以下简称k8s)集群的搭建。
本文包括:

etcd集群的搭建;

docker安装和配置(简单介绍);

flannel安装和配置(简单介绍);

k8s集群部署;

准备工作:

主机运行服务角色
172.20.30.19(centos7.1)etcd
docker
flannel
kube-apiserver
kube-controller-manager
kube-scheduler
k8s-master
172.20.30.21(centos7.1)etcd
docker
flannel
kubelet
kube-proxy
minion
172.20.30.18(centos7.1)etcd
docker
flannel
kubelet
kube-proxy
minion
172.20.30.20(centos7.1)etcd
docker
flannel
kubelet
kube-proxy
minion

安装:

下载好etcd、docker、flannel的rpm安装包,例如:

etcd:

etcd-2.2.5-2.el7.0.1.x86_64.rpm

flannel:

flannel-0.5.3-9.el7.x86_64.rpm

docker:

device-mapper-1.02.107-5.el7_2.5.x86_64.rpm docker-selinux-1.10.3-44.el7.centos.x86_64.rpm
device-mapper-event-1.02.107-5.el7_2.5.x86_64.rpm libseccomp-2.2.1-1.el7.x86_64.rpm
device-mapper-event-libs-1.02.107-5.el7_2.5.x86_64.rpm lvm2-2.02.130-5.el7_2.5.x86_64.rpm
device-mapper-libs-1.02.107-5.el7_2.5.x86_64.rpm lvm2-libs-2.02.130-5.el7_2.5.x86_64.rpm
device-mapper-persistent-data-0.5.5-1.el7.x86_64.rpm oci-register-machine-1.10.3-44.el7.centos.x86_64.rpm
docker-1.10.3-44.el7.centos.x86_64.rpm oci-systemd-hook-1.10.3-44.el7.centos.x86_64.rpm
docker-common-1.10.3-44.el7.centos.x86_64.rpm yajl-2.0.4-4.el7.x86_64.rpm
docker-forward-journald-1.10.3-44.el7.centos.x86_64.rpm

etcd和flannel的安装比较简单,没有依赖关系。docker的安装因为有依赖关系,需要先安装docker的依赖包,才能安装成功。此处不是本文的重点,不做赘述。

四台机器上,都必须安装etcd,docker,和flannel

下载kubernetes 1.3版本的二进制包,点击下载

下载完成后执行一下操作,以在 172.20.30.19上为例:

# tar zxvf kubernetes1.3.tar.gz # 解压二进制包
# cd kubernetes/server
# tar zxvf kubernetes-server-linux-amd64.tar.gz  # 解压master所需的安装包
# cd kubernetes/server/bin/
# cp kube-apiserver kube-controller-manager kubectl kube-scheduler /usr/bin #把master需要的程序,拷贝到/usr/bin下,也可以设置环境变量达到相同目的
# scp kubelet kube-proxy root@172.20.30.21:~  # 把minion需要的程序,scp发送到minion上
# scp kubelet kube-proxy root@172.20.30.19:~
# scp kubelet kube-proxy root@172.20.30.20:~


配置和部署:

1. etcd的配置和部署

修改四台机器中etcd的etcd配置:

# [member]
ETCD_NAME="etcd-2"
ETCD_DATA_DIR="/data/etcd/"
#ETCD_WAL_DIR=""
#ETCD_SNAPSHOT_COUNT="10000"
#ETCD_HEARTBEAT_INTERVAL="100"
#ETCD_ELECTION_TIMEOUT="1000"
#ETCD_LISTEN_PEER_URLS="http://localhost:2380"   # 去掉默认的配置
ETCD_LISTEN_PEER_URLS="http://0.0.0.0:7001"
#ETCD_LISTEN_CLIENT_URLS="http://localhost:2379" # 去掉默认的配置
ETCD_LISTEN_CLIENT_URLS="http://0.0.0.0:4001"
#ETCD_MAX_SNAPSHOTS="5"
#ETCD_MAX_WALS="5"
#ETCD_CORS=""
#
#[cluster]
#ETCD_INITIAL_ADVERTISE_PEER_URLS="http://localhost:2380"
ETCD_INITIAL_ADVERTISE_PEER_URLS="http://172.20.30.21:7001"
# if you use different ETCD_NAME (e.g. test), set ETCD_INITIAL_CLUSTER value for this name, i.e. "test=http://..."
#ETCD_INITIAL_CLUSTER="default=http://localhost:2380"
ETCD_INITIAL_CLUSTER="etcd-1=http://172.20.30.19:7001,etcd-2=http://172.20.30.21:7001,etcd-3=http://172.20.30.18:7001,etcd-4=http://172.20.30.20:7001"# 此处的含义为,要配置包含有4台机器的etcd集群
ETCD_INITIAL_CLUSTER_STATE="new"
#ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
#ETCD_ADVERTISE_CLIENT_URLS="http://localhost:2379"
ETCD_ADVERTISE_CLIENT_URLS="http://172.20.30.21:4001"
#ETCD_DISCOVERY=""
#ETCD_DISCOVERY_SRV=""
#ETCD_DISCOVERY_FALLBACK="proxy"
#ETCD_DISCOVERY_PROXY=""
#
#[proxy]
#ETCD_PROXY="off"
#ETCD_PROXY_FAILURE_WAIT="5000"
#ETCD_PROXY_REFRESH_INTERVAL="30000"
#ETCD_PROXY_DIAL_TIMEOUT="1000"
#ETCD_PROXY_WRITE_TIMEOUT="5000"
#ETCD_PROXY_READ_TIMEOUT="0"
#
#[security]
#ETCD_CERT_FILE=""
#ETCD_KEY_FILE=""
#ETCD_CLIENT_CERT_AUTH="false"
#ETCD_TRUSTED_CA_FILE=""
#ETCD_PEER_CERT_FILE=""
#ETCD_PEER_KEY_FILE=""
#ETCD_PEER_CLIENT_CERT_AUTH="false"
#ETCD_PEER_TRUSTED_CA_FILE=""
#
#[logging]
#ETCD_DEBUG="false"
# examples for -log-package-levels etcdserver=WARNING,security=DEBUG
#ETCD_LOG_PACKAGE_LEVELS=""


修改四台机器中etcd的服务配置: /usr/lib/systemd/system/etcd.service。修改后的文件内容为:

[Unit]
Description=Etcd Server
After=network.target
After=network-online.target
Wants=network-online.target

[Service]
Type=notify
WorkingDirectory=/var/lib/etcd/
EnvironmentFile=-/etc/etcd/etcd.conf
User=etcd
# set GOMAXPROCS to number of processors
ExecStart=/bin/bash -c "GOMAXPROCS=$(nproc) /usr/bin/etcd --name=\"${ETCD_NAME}\" --data-dir=\"${ETCD_DATA_DIR}\" --listen-client-urls=\"${ETCD_LISTEN_CLIENT_URLS}\" --listen-peer-urls=\"${ETCD_LISTEN_PEER_URLS}\" --advertise-client-urls=\"${ETCD_ADVERTISE_CLIENT_URLS}\" --initial-advertise-peer-urls=\"${ETCD_INITIAL_ADVERTISE_PEER_URLS}\" --initial-cluster=\"${ETCD_INITIAL_CLUSTER}\" --initial-cluster-state=\"${ETCD_INITIAL_CLUSTER_STATE}\""
Restart=on-failure
LimitNOFILE=65536

[Install]
WantedBy=multi-user.target


在每台机器上执行:

# systemctl enable etcd.service
# systemctl start etcd.service


然后选择一台机器,在其上执行:

# etcdctl set /cluster "example-k8s"


再选取另外一台机器,执行:

# etcdctl get /cluster


如果返回 “example-k8s”,则etcd集群部署成功。

2. docker的配置和部署

docker的配置修改比较简单,主要是添加本地的 register地址:
在每台机器的docker配置(路径为 /etc/sysconfig/docker)中,均增加以下配置项:

ADD_REGISTRY="--add-registry docker.midea.registry.hub:10050"
DOCKER_OPTS="--insecure-registry docker.midea.registry.hub:10050"
INSECURE_REGISTRY="--insecure-registry docker.midea.registry.hub:10050"


以上配置项为本地 register 的地址和服务端口,在docker的服务启动项中有用。具体register的搭建,请参考上一篇文章。

修改四台机器中docker的服务启动配置项 /usr/lib/systemd/system/docker.service。修改[Serive]项下的ExecStart 的值。
修改后,服务启动配置内容为:

[Unit]
Description=Docker Application Container Engine
Documentation=http://docs.docker.com
After=network.target
Wants=docker-storage-setup.service

[Service]
Type=notify
NotifyAccess=all
EnvironmentFile=-/etc/sysconfig/docker
EnvironmentFile=-/etc/sysconfig/docker-storage
EnvironmentFile=-/etc/sysconfig/docker-network
Environment=GOTRACEBACK=crash
ExecStart=/bin/sh -c 'exec -a docker /usr/bin/docker-current daemon \  #注意,在centos是,此处是个坑。docker启动的时候,systemd是无法获取到docker的pid,可能会导致后面的flannel服务无法启动,需要加上红色部分,让systemd能抓取到 docker的pid
--exec-opt native.cgroupdriver=systemd \
$OPTIONS \
$DOCKER_STORAGE_OPTIONS \
$DOCKER_NETWORK_OPTIONS \
$ADD_REGISTRY \
$BLOCK_REGISTRY \
$INSECURE_REGISTRY \
2>&1 | /usr/bin/forward-journald -tag docker'
LimitNOFILE=1048576
LimitNPROC=1048576
LimitCORE=infinity
TimeoutStartSec=0
MountFlags=slave
Restart=on-abnormal
StandardOutput=null
StandardError=null

[Install]
WantedBy=multi-user.target


分别在每台机器上执行:

# systemctl enable docker.service
# systemctl start docker


检测docker的运行状态很简单,执行

# docker ps


查看是否能正常列出运行中的容器的各个元数据项即可(此时没有container运行,只列出各个元数据项):

# docker ps
CONTAINER ID        IMAGE               COMMAND             CREATED             STATUS              PORTS               NAMES


3. flannel的配置和部署

修改flannel的配置文件 /etc/sysconfig/flanneld
把etcd的服务地址和端口,flannel配置子网的信息,以及日志路径等添加到配置文件中。
因为每台机器上,都有etcd在运行,因此etcd的服务地址和端口,填写本机的即可。etcd会自动同步到etcd集群中的其它节点上。
修改完成后,文件内容:

# Flanneld configuration options

# etcd url location.  Point this to the server where etcd runs
FLANNEL_ETCD="http://172.20.30.21:4001"

# etcd config key.  This is the configuration key that flannel queries
# For address range assignment
FLANNEL_ETCD_KEY="/k8s/network" #这是一个目录,etcd中的目录

# Any additional options that you want to pass
FLANNEL_OPTIONS="--logtostderr=false --log_dir=/var/log/k8s/flannel/ --etcd-endpoints=http://172.20.30.21:4001"


然后执行:

# etcdctl mkdir /k8s/network


该命令是在etcd上创建一个目录,再执行:

# etcdctl set /k8s/network/config '{"Network":"172.100.0.0/16"}'


该命令含义是,期望docker运行的container实例的地址,都在 172.100.0.0/16 网段中

flanneld会读取/k8s/network目录中config值,然后接管docker的地址分配,并把docker和宿主机器之间的网络桥接起来。

flannel的服务启动配置不用做修改。

执行:

# systemctl enable flanneld.service
# systemctl stop docker # 暂时先关闭docker服务,启动flanneld的时候,会自动拉起docker服务
# systemctl start flanneld.service


命令执行完成,如果没有差错的话,就会顺利地拉起docker。

使用 ifconfig 查看当前系统中的网络设备,就会发现除了有本身就有的eth0和lo等网络接口之外,出现了docker0和flannel0的网络设备:

# ifconfig
docker0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1472
inet 172.100.28.1  netmask 255.255.255.0  broadcast 0.0.0.0
inet6 fe80::42:86ff:fe81:6892  prefixlen 64  scopeid 0x20<link>
ether 02:42:86:81:68:92  txqueuelen 0  (Ethernet)
RX packets 29  bytes 2013 (1.9 KiB)
RX errors 0  dropped 0  overruns 0  frame 0
TX packets 25  bytes 1994 (1.9 KiB)
TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
inet 172.20.30.21  netmask 255.255.255.0  broadcast 172.20.30.255
inet6 fe80::f816:3eff:fe43:21ac  prefixlen 64  scopeid 0x20<link>
ether fa:16:3e:43:21:ac  txqueuelen 1000  (Ethernet)
RX packets 13790001  bytes 3573763877 (3.3 GiB)
RX errors 0  dropped 0  overruns 0  frame 0
TX packets 13919888  bytes 1320674626 (1.2 GiB)
TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

flannel0: flags=4305<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST>  mtu 1472
inet 172.100.28.0  netmask 255.255.0.0  destination 172.100.28.0
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00  txqueuelen 500  (UNSPEC)
RX packets 0  bytes 0 (0.0 B)
RX errors 0  dropped 0  overruns 0  frame 0
TX packets 2  bytes 120 (120.0 B)
TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING>  mtu 65536
inet 127.0.0.1  netmask 255.0.0.0
inet6 ::1  prefixlen 128  scopeid 0x10<host>
loop  txqueuelen 0  (Local Loopback)
RX packets 65311  bytes 5768287 (5.5 MiB)
RX errors 0  dropped 0  overruns 0  frame 0
TX packets 65311  bytes 5768287 (5.5 MiB)
TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0


以上描述,就部署好了基本的环境,接下来要部署和启动kubernetes服务。

4. kubenetes 部署

master:
编写如下脚本,保存为start_k8s_master.sh

#! /bin/sh

# firstly, start etcd
systemctl restart etcd

# secondly, start flanneld
systemctl restart flanneld

# then, start docker
systemctl restart docker

# start the main server of k8s master
nohup kube-apiserver --insecure-bind-address=0.0.0.0 --insecure-port=8080 --cors_allowed_origins=.* --etcd_servers=http://172.20.30.19:4001 --v=1 --logtostderr=false --log_dir=/var/log/k8s/apiserver --service-cluster-ip-range=172.100.0.0/16 &

nohup kube-controller-manager --master=172.20.30.19:8080 --enable-hostpath-provisioner=false --v=1 --logtostderr=false --log_dir=/var/log/k8s/controller-manager &

nohup kube-scheduler --master=172.20.30.19:8080 --v=1 --logtostderr=false --log_dir=/var/log/k8s/scheduler &


然后赋予执行权限:

# chmod u+x start_k8s_master.sh


由于安装k8s的操作,已经把kubelet和kube-proxy发送到作为minion机器上了(我们已经悄悄地定义好了k8s集群)

因此,编写脚本,保存为start_k8s_minion.sh

#! /bin/sh

# firstly, start etcd
systemctl restart etcd

# secondly, start flanneld
systemctl restart flanneld

# then, start docker
systemctl restart docker

# start the minion
nohup kubelet --address=0.0.0.0 --port=10250 --v=1 --log_dir=/var/log/k8s/kubelet --hostname_override=172.20.30.21 --api_servers=http://172.20.30.19:8080 --logtostderr=false &

nohup kube-proxy --master=172.20.30.19:8080 --log_dir=/var/log/k8s/proxy --v=1 --logtostderr=false &


然后赋予执行权限:

# chmod u+x start_k8s_minion.sh


发送该脚本到作为minion的主机上。

运行k8s

在作为master的主机上,执行:

# ./start_k8s_master.sh


在作为minion的主机上,执行:

# ./start_k8s_minion.sh


在master主机上,执行:

# kubectl get node
NAME           STATUS    AGE
172.20.30.18   Ready     5h
172.20.30.20   Ready     5h
172.20.30.21   Ready     5h


列出以上信息,则表示k8s集群部署成功。

参考:

http://kubernetes.io/docs/user-guide/
Docker容器与容器云

感谢楚哥在学习过程中的答疑。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: