您的位置:首页 > 产品设计 > UI/UE

精确获取时间(QueryPerformanceCounter)

2016-07-25 17:13 591 查看
转自:http://blog.csdn.net/lsmdiao0812/article/details/3173374

LARGE_INTEGER tima,timb;
QueryPerformanceCounter(&tima);


在 Windows Server 2003 和 WindowsXP 中使用 QueryPerformanceCounter 函数的程序可能执行不当

// 这个程序展示了如何使用QueryPerformanceCounter 来精确计算执行时间
LARGE_INTEGER m_liPerfFreq={0};
//获取每秒多少CPU Performance Tick
QueryPerformanceFrequency(&m_liPerfFreq);
LARGE_INTEGER m_liPerfStart={0};
QueryPerformanceCounter(&m_liPerfStart);
for(int i=0; i< 100; i++)
cout << i << endl;
LARGE_INTEGER liPerfNow={0};
// 计算CPU运行到现在的时间
QueryPerformanceCounter(&liPerfNow);
int time=( ((liPerfNow.QuadPart - m_liPerfStart.QuadPart) *1000)/m_liPerfFreq.QuadPart);
char buffer[100];
sprintf(buffer,"执行時間 %d millisecond ",time);
cout<<buffer<<endl;


QueryPerformanceCounter()这个函数返回高精确度性能计数器的值,它可以以微妙为单位计时.但是QueryPerformanceCounter()确切的精确计时的最小单位是与系统有关的,所以,必须要查询系统以得到QueryPerformanceCounter()返回的嘀哒声的频率.

QueryPerformanceFrequency()提供了这个频率值,返回每秒嘀哒声的个数.

计算确切的时间是从第一次调用QueryPerformanceCounter()开始的, 假设得到的LARGE_INTEGER为nStartCounter,过一段时间后再次调用该函数结束的,设得到nStopCounter.

两者之差除以QueryPerformanceFrequency()的频率就是开始到结束之间的秒数.由于计时函数本身要耗费很少的时间,要减去一个很少的时间开销.但一般都把这个开销忽略.公式如下:

ElapsedTime=nStopCounter−nStartCounterfrequency−overhead

double time=(nStopCounter.QuadPart-nStartCounter.QuadPart)/frequency.QuadPart


这两个函数是VC提供的仅供Windows 95及其后续版本使用的精确时间函数,并要求计算机从硬件上支持精确定时器。

QueryPerformanceFrequency()函数和QueryPerformanceCounter()函数的原型如下:

BOOL  QueryPerformanceFrequency(LARGE_INTEGER *lpFrequency);
BOOL  QueryPerformanceCounter(LARGE_INTEGER *lpCount);


  数据类型ARGE_INTEGER既可以是一个8字节长的整型数,也可以是两个4字节长的整型数的联合结构, 其具体用法根据编译器是否支持64位而定。该类型的定义如下:

typedef union _LARGE_INTEGER
{
struct
{
DWORD LowPart ;// 4字节整型数
LONG  HighPart;// 4字节整型数
};
LONGLONG QuadPart ;// 8字节整型数
}LARGE_INTEGER;


  在进行定时之前,先调用QueryPerformanceFrequency()函数获得机器内部定时器的时钟频率, 然后在需要严格定时的事件发生之前和发生之后分别调用QueryPerformanceCounter()函数,利用两次获得的计数之差及时钟频率,计算出事件经 历的精确时间。下列代码实现1ms的精确定时:

LARGE_INTEGER litmp;
LONGLONG QPart1,QPart2;
double dfMinus, dfFreq, dfTim;
QueryPerformanceFrequency(&litmp);
dfFreq = (double)litmp.QuadPart;// 获得计数器的时钟频率
QueryPerformanceCounter(&litmp);
QPart1 = litmp.QuadPart;// 获得初始值
do
{
QueryPerformanceCounter(&litmp);
QPart2 = litmp.QuadPart;//获得中止值
dfMinus = (double)(QPart2-QPart1);
dfTim = dfMinus / dfFreq;// 获得对应的时间值,单位为秒
}while(dfTim<0.001);


其定时误差不超过1微秒,精度与CPU等机器配置有关。 下面的程序用来测试函数Sleep(100)的精确持续时间:

LARGE_INTEGER litmp;
LONGLONG QPart1,QPart2;
double dfMinus, dfFreq, dfTim;
QueryPerformanceFrequency(&litmp);
dfFreq = (double)litmp.QuadPart;// 获得计数器的时钟频率
QueryPerformanceCounter(&litmp);
QPart1 = litmp.QuadPart;// 获得初始值
Sleep(100);
QueryPerformanceCounter(&litmp);
QPart2 = litmp.QuadPart;//获得中止值
dfMinus = (double)(QPart2-QPart1);
dfTim = dfMinus / dfFreq;// 获得对应的时间值,单位为秒


由于Sleep()函数自身的误差,上述程序每次执行的结果都会有微小误差。下列代码实现1微秒的精确定时:

LARGE_INTEGER litmp;
LONGLONG QPart1,QPart2;
double dfMinus, dfFreq, dfTim;
QueryPerformanceFrequency(&litmp);
dfFreq = (double)litmp.QuadPart;// 获得计数器的时钟频率
QueryPerformanceCounter(&litmp);
QPart1 = litmp.QuadPart;// 获得初始值
do
{
QueryPerformanceCounter(&litmp);
QPart2 = litmp.QuadPart;//获得中止值
dfMinus = (double)(QPart2-QPart1);
dfTim = dfMinus / dfFreq;// 获得对应的时间值,单位为秒
}while(dfTim<0.000001);


其定时误差一般不超过0.5微秒,精度与CPU等机器配置有关。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  时间