您的位置:首页 > 其它

RT-thread 设备驱动组件之IIC总线设备

2016-07-04 14:52 260 查看
 本文主要介绍RT-thread中IIC总线设备驱动,涉及到的主要文件有:驱动框架文件(i2c_core.c,i2c_dev.c,i2c-bit-ops.c,i2c_dev.h,i2c.h);底层硬件驱动文件(i2c_soft.c,i2c_soft.h)。这里的i2c_soft.c和i2c_soft.h是指利用MCU的GPIO口模拟IIC总线时序,而不是利用MCU的硬件IIC接口。应用IIC总线设备驱动时,需要在rtconfig.h中添加宏定义#define
RT_USING_I2C。若使用GPIO口模拟IIC总线,则还需要添加宏定义#define RT_USING_I2C_BITOPS。
一、IIC总线设备驱动框架
先看i2c.h中定义的一些数据结构:

#define RT_I2C_WR                0x0000
#define RT_I2C_RD               (1u << 0)
#define RT_I2C_ADDR_10BIT       (1u << 2)  /* this is a ten bit chip address */
#define RT_I2C_NO_START         (1u << 4)
#define RT_I2C_IGNORE_NACK      (1u << 5)
#define RT_I2C_NO_READ_ACK      (1u << 6)  /* when I2C reading, we do not ACK */

struct rt_i2c_msg
{
rt_uint16_t addr;
rt_uint16_t flags;
rt_uint16_t len;
rt_uint8_t  *buf;
};

struct rt_i2c_bus_device;

struct rt_i2c_bus_device_ops
{
rt_size_t (*master_xfer)(struct rt_i2c_bus_device *bus,
struct rt_i2c_msg msgs[],
rt_uint32_t num);
rt_size_t (*slave_xfer)(struct rt_i2c_bus_device *bus,
struct rt_i2c_msg msgs[],
rt_uint32_t num);
rt_err_t (*i2c_bus_control)(struct rt_i2c_bus_device *bus,
rt_uint32_t,
rt_uint32_t);
};

/*for i2c bus driver*/
struct rt_i2c_bus_device
{
struct rt_device parent;
const struct rt_i2c_bus_device_ops *ops;
rt_uint16_t  flags;
rt_uint16_t  addr;
struct rt_mutex lock;
rt_uint32_t  timeout;
rt_uint32_t  retries;
void *priv;
};


i2c_dev.h中相关数据结构(struct rt_i2c_priv_data用于i2c_bus_device_control()函数中RT_I2C_DEV_CTRL_RW控制标志):

#define RT_I2C_DEV_CTRL_10BIT        0x20
#define RT_I2C_DEV_CTRL_ADDR         0x21
#define RT_I2C_DEV_CTRL_TIMEOUT      0x22
#define RT_I2C_DEV_CTRL_RW           0x23

struct rt_i2c_priv_data
{
struct rt_i2c_msg  *msgs;
rt_size_t  number;
};


i2c-bit-ops.h中主要定义了模拟IIC总线时序时需要的数据结构:

struct rt_i2c_bit_ops
{
void *data;            /* private data for lowlevel routines */
void (*set_sda)(void *data, rt_int32_t state);
void (*set_scl)(void *data, rt_int32_t state);
rt_int32_t (*get_sda)(void *data);
rt_int32_t (*get_scl)(void *data);

void (*udelay)(rt_uint32_t us);

rt_uint32_t delay_us;  /* scl and sda line delay */
rt_uint32_t timeout;   /* in tick */
};


在i2c_dev.c主要实现IIC设备驱动统一接口函数:i2c_bus_device_read(),i2c_bus_device_write(),i2c_bus_device_control()以及rt_i2c_bus_device_device_init()。

rt_err_t rt_i2c_bus_device_device_init(struct rt_i2c_bus_device *bus,
const char               *name)
{
struct rt_device *device;
RT_ASSERT(bus != RT_NULL);

device = &bus->parent;

device->user_data = bus;

/* set device type */
device->type    = RT_Device_Class_I2CBUS;
/* initialize device interface */
device->init    = RT_NULL;
device->open    = RT_NULL;
device->close   = RT_NULL;
device->read    = i2c_bus_device_read;
device->write   = i2c_bus_device_write;
device->control = i2c_bus_device_control;

/* register to device manager */
rt_device_register(device, name, RT_DEVICE_FLAG_RDWR);

return RT_EOK;
}


i2c_core.c中实现IIC总线设备注册,以及使用IIC总线进行数据传输,如:rt_i2c_transfer(),rt_i2c_master_send(),rt_i2c_master_recv()。

rt_err_t rt_i2c_bus_device_register(struct rt_i2c_bus_device *bus,
const char               *bus_name)
{
rt_err_t res = RT_EOK;

rt_mutex_init(&bus->lock, "i2c_bus_lock", RT_IPC_FLAG_FIFO);

if (bus->timeout == 0) bus->timeout = RT_TICK_PER_SECOND;

res = rt_i2c_bus_device_device_init(bus, bus_name);

i2c_dbg("I2C bus [%s] registered\n", bus_name);

return res;
}


i2c-bit-ops.c中主要实现了利用GPIO模拟IIC总线时序的相关接口函数,如:i2c_start(),i2c_restart(),i2c_stop(),i2c_waitack(),i2c_writeb(),i2c_readb(),i2c_send_bytes(),i2c_send_ack_or_nack(),i2c_recv_bytes(),i2c_send_address(),i2c_bit_send_address()等。并且实现了i2c_bit_xfer():

static const struct rt_i2c_bus_device_ops i2c_bit_bus_ops =
{
i2c_bit_xfer,
RT_NULL,
RT_NULL
};


rt_err_t rt_i2c_bit_add_bus(struct rt_i2c_bus_device *bus,
const char               *bus_name)
{
bus->ops = &i2c_bit_bus_ops;

return rt_i2c_bus_device_register(bus, bus_name);
}


二、底层硬件驱动
本文采用的是模拟IIC,即用GPIO口模拟IIC时序。在i2c_soft.c中主要实现struct rt_i2c_bit_ops中的指针函数:

void stm32_set_sda(void *data, rt_int32_t state)
{
if(state == 1)
GPIO_SetBits(I2C1_GPIO , I2C1_GPIO_SDA);   //GPIOB->BSRRL = I2C1_GPIO_SDA
else if(state == 0)
GPIO_ResetBits(I2C1_GPIO , I2C1_GPIO_SDA); //GPIOB->BSRRH = I2C1_GPIO_SDA
}

void stm32_set_scl(void *data, rt_int32_t state)
{
if(state == 1)
GPIO_SetBits(I2C1_GPIO , I2C1_GPIO_SCL);   //GPIOB->BSRRL = I2C1_GPIO_SCL
else if(state == 0)
GPIO_ResetBits(I2C1_GPIO , I2C1_GPIO_SCL); //GPIOB->BSRRH = I2C1_GPIO_SCL
}

rt_int32_t stm32_get_sda(void *data)
{
return (rt_int32_t)GPIO_ReadInputDataBit(I2C1_GPIO , I2C1_GPIO_SDA);//return(GPIOB->IDR  & I2C1_GPIO_SDA)
}

rt_int32_t stm32_get_scl(void *data)
{
return (rt_int32_t)GPIO_ReadInputDataBit(I2C1_GPIO , I2C1_GPIO_SCL);//return(GPIOB->IDR  & I2C1_GPIO_SCL)
}

void stm32_udelay(rt_uint32_t us)
{
rt_uint32_t delta;
/* ¼ÆËãusÑÓʱËùÐè¼ÆÊýÖµ£»sysTick->LOAD=21000, RT_TICK_PER_SECOND=1000 */
us = us * (SysTick->LOAD/(1000000/RT_TICK_PER_SECOND));
/* »ñÈ¡µ±Ç°àÖ઼ÆÊýÖµ */
delta = SysTick->VAL;
/* ÑÓʱus */
while (delta - SysTick->VAL< us);
}

void stm32_mdelay(rt_uint32_t ms)
{
stm32_udelay(ms * 1000);
}

static const struct  rt_i2c_bit_ops stm32_i2c_bit_ops =
{
(void*)0xaa,     //no use in set_sda,set_scl,get_sda,get_scl
stm32_set_sda,
stm32_set_scl,
stm32_get_sda,
stm32_get_scl,
stm32_udelay,
20,
5
};


最后,实现IIC总线硬件初始化(包括RCC时钟配置和GPIO配置,最重要的是将stm32_i2c_bit_ops初始化为IIC总线设备结构体的priv变量,即stm32_i2c.priv = (void *)&stm32_i2c_bit_ops):

int rt_hw_i2c_init(void)
{
static struct rt_i2c_bus_device stm32_i2c;//"static" add by me. It must be add "static", or it will be hard fault

RCC_Configuration();
GPIO_Configuration();

rt_memset((void *)&stm32_i2c, 0, sizeof(struct rt_i2c_bus_device));
stm32_i2c.priv = (void *)&stm32_i2c_bit_ops;
rt_i2c_bit_add_bus(&stm32_i2c, "i2c1");

return 0;
}
INIT_BOARD_EXPORT(rt_hw_i2c_init);//rt_hw_i2c_init will be called in rt_components_board_init()


三、IIC总线设备初始化
这里以cs43l22数字音频放大器为例:

static rt_err_t cs43l22_init(const char * i2c_bus_name)
{
i2c_bus = (struct rt_i2c_bus_device *)rt_device_find(i2c_bus_name);
if(i2c_bus == RT_NULL)
{
rt_kprintf("\ni2c_bus %s for cs43l22 not found!\n", i2c_bus_name);
return -RT_ENOSYS;
}

/* oflag has no meaning for spi device , so set to RT_NULL */
if(rt_device_open(&i2c_bus->parent, RT_NULL) != RT_EOK)
{
rt_kprintf("\ni2c_bus %s for cs43l22 opened failed!\n", i2c_bus_name);
return -RT_EEMPTY;
}

EVAL_AUDIO_Init(OUTPUT_DEVICE_AUTO, volume, I2S_AudioFreq_48k);

/* it must be at the back of EVAL_AUDIO_Init, which reset the cs43l22 */
uint8_t chip_id = Codec_ReadRegister(i2c_bus, 0x01);
rt_kprintf("(chip_id of cs43l22 is 0x%02x)", chip_id);

return 0;
}

int rt_cs43l22_init(void)
{
rt_sem_init(&sem_cs43l22, "cs43l22", 1, RT_IPC_FLAG_FIFO);

cs43l22_init("i2c1");

return 0;
}
INIT_APP_EXPORT(rt_cs43l22_init);


注意事项:
1、在应用IIC总线设备驱动时,需要用到rt_device_read或rt_device_write,因此在初始化函数中需要调用rt_device_open将IIC总线设备打开。
2、下面利用rt_device_read和rt_device_write操作寄存器(每一次调用rt_device_read或rt_device_write都包括了i2c_start,i2c_bit_send_address,i2c_recv_bytes/i2c_send_bytes,i2c_stop这4个步骤):

static uint32_t Codec_WriteRegister(struct rt_i2c_bus_device * i2c_bus, uint8_t RegisterAddr, uint8_t RegisterValue)
{
uint32_t result = 0;

rt_uint16_t flags = 0x00;
rt_uint16_t DevAddr = (rt_uint16_t)CODEC_ADDRESS >> 1;
rt_off_t pos = (rt_off_t)((flags << 16) | DevAddr);

rt_uint8_t buffer[2];
buffer[0] = RegisterAddr;
buffer[1] = RegisterValue;

rt_device_write(&i2c_bus->parent, pos, buffer, sizeof(buffer));

#ifdef VERIFY_WRITTENDATA
/* Verify that the data has been correctly written */
result = (Codec_ReadRegister(i2c_bus, RegisterAddr) == RegisterValue)? 0:1;
if(result == 0)
rt_kprintf("\nthe reg 0x%02x verify passed\n",RegisterAddr);
else
rt_kprintf("\nthe reg 0x%02x verify failed\n",RegisterAddr);
#endif /* VERIFY_WRITTENDATA */

/* Return the verifying value: 0 (Passed) or 1 (Failed) */
return result;
}


static uint8_t Codec_ReadRegister(struct rt_i2c_bus_device * i2c_bus, uint8_t RegisterAddr)
{
rt_uint16_t flags = 0x00;
rt_uint16_t DevAddr = (rt_uint16_t)CODEC_ADDRESS >> 1;
rt_off_t pos = (rt_off_t)((flags << 16) | DevAddr);

rt_uint8_t buffer;
buffer = RegisterAddr;

rt_device_write(&i2c_bus->parent, pos, &buffer, 1);
rt_device_read(&i2c_bus->parent, pos, &buffer, 1);

/* Return the byte read from Codec */
return buffer;
}


在上面两个函数中,有符号整型32位pos的高16位表示flags,低16位表示IIC器件地址。flags取值如i2c.h文件中宏定义所示。
这里说明一个问题:在rt_i2c_master_send和rt_i2c_master_recv函数中均有“msg.flags = flags & RT_I2C_ADDR_10BIT;”这一语句,该句用于标志IIC器件地址是否为10位地址,但是这条语句会将其他预置好的标志全部清除,如RT_I2C_NO_START,RT_I2C_IGNORE_NACK或RT_I2C_NO_READ_ACK。所以,在一般情况下,flags标志只能事先预置RT_I2C_ADDR_10BIT,若IIC器件地址为7位,则直接设置flags为0。
3、根据i2c_bit_send_address()函数中:

else
{
/* 7-bit addr */
addr1 = msg->addr << 1;
if (flags & RT_I2C_RD)
addr1 |= 1;
ret = i2c_send_address(bus, addr1, retries);
if ((ret != 1) && !ignore_nack)
return -RT_EIO;
}


可得,若IIC器件地址为7位,则pos低16位所表示的地址值DevAddr不包括读写标志位(最低位)。而cs43l22数据手册中的8位地址值包含了读写标志位,因此设置DevAddr为CODEC_ADDRESS >> 1。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  RTT 操作系统