您的位置:首页 > 移动开发 > Android开发

android6.0源码分析之Runtime的初始化

2016-06-17 09:59 561 查看

android源码分析之Runtime的初始化

android运行时作为android架构的一部分,起着非常重要的作用,它和核心库(Core Libraries)组成了Android运行时库层。本文将依据android源码对AndroidRuntime(android运行时)的建立过程进行分析。

1、Android架构中的AndroidRuntime

android采用的是层次化系统架构,它的架构图如下:



由架构图可知,AndroidRuntime处于Linux内核层以及应用框架层中间,而Java的运行环境依赖于Java虚拟机,所以AndroidRuntime对于android系统非常重要。Init进程是Linux环境下非常重要的一个进程,而Zygote进程是Java环境下的第一个进程,所有其他的Java环境下的进程都是由Zygote进程来进行fork的,而init进程在启动Zygote进程之后,初始化Zygote进程之前,会先进行AndroidRuntime的启动和环境建立,下文将对此过程进行详细分析。

2、init进程分析

init进程作为linux启动过程中的一个重要的进程,它主要负责文件系统的挂载,属性的初始化,各种配置的加载启动以及Action触发,Service的启动,而Zygote作为Java环境下的服务进程,也在Init.rc中进行了配置,而init进程是由main函数进行触发的,其main函数如下:

//Init.cpp
int main(int argc, char **argv){
...
//清除umask默认属性
umask();
add_environment("PATH",_PATH_DEFPATH);
//判断是不是初始化的第一阶段
bool is_first_stage = (arg == 1)||(strcmp(argv[1],"--second-stage")!=0);
if(is_first_stage){
//进行系统文件系统等的挂载
mount("tmpfs","/dev","tmpfs",MS_NOSUID,"mode=0755");
mkdir("/dev/pts",0755);
mkdir("/dev/socket",0755);
mount("devpts","/dev/pts","devpts",0,NULL);
mount("proc","/proc","proc",0,NULL);
mount("sysfs","/sys","sysfs",0,NULL);
}
open_devull_stdio();
//klog初始化
klog_init();
klog_set_level(KLOG_NOTICE_LEVEL);
if(!is_first_stage){
//关闭/dev/.booting文件的相关权限
close("/dev/.booting",O_WRONLY|O_WCREAT|O_CLOEXEC,000);
//初始化部分属性
property_init();
//先初始化DT,因为DT的属性集的优先级高于comand line
process_kernel_dt();
//处理内核命令行
process_kernel_cmdline;
//导出内核变量
export_kernel_boot_props();
}
...
//初始化信号量
signal_handler_init();

property_load_boot_defaults();
//开启属性服务
start_property_service();

//解析/init.rc文件
init_parse_config_file(/init.rc);
...
}


此处的代码与android 4.4等,在代码上有略微的差别,但是基本的操作还是一样的,首先进行一些属性的初始化,内核命令行等以及信号量的初始化,最后再启动属性服务以及对init.rc文件进行解析,所以,接下来分析Init.rc文件:

//Init.rc
import /init.environ.rc
import /init.usb.rc
import /init.${ro.hardware}.rc
import /init.${ro.zygote}.rc
import /init.trace.rc
...


由代码可知,与android4.4等有明显的差别,此处采用导入.rc文件的方式来初始化相应模块,此处分析zygote模块,对于android6.0来说,它提供了多个zygote相关的.rc文件,有Init.zygote32.rc、Init.zygote32_64.rc、Init.zygote64.rc、Init.zygote64_32.rc等,本文分析Init.zygote32.rc,其他流程是一样的,但是在源码中,只发现了Init.zygote32.rc的相关实现。

看Init.zygote32.rc文件:

//Init.zygote32.rc
service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server
class main
socket zygote stream 660 root system
onrestart write /sys/android_power/request_state wake
onrestart write /sys/power/state on
onrestart restart media
onrestart restart netd


由代码可知,它将会执行/system/bin/app_process,而后面的是它的参数,请注意–zygote和–start-system-server参数,后面将会分析到,而对于/system/bin/app_process的实现app_main.cpp(frameworks/base/cmds/app_process),它的配置在frameworks/base/cmds/app_process目录下的Android.mk文件中:

//Android.mk(frameworks/base/cmds/app_process)
LOCAL_PATH = $(call my-dir)
app_process_common-shared_libs:=\
libwilhelm\
include $(CLEAR_VARS)
#看,app_process命令绑定的源码就是该目录下的app_main.cpp
LOCAL_SRC_FILES:=\
app_main.cpp
...


所以,app_process命令绑定的源码实现就是app_main.cpp,在解析Init.zygote32.rc文件的时候,会调用到它的main函数,即app_main.cpp的main函数

3、Android运行时的启动分析

上一节分析了Init进程启动与android运行时的关系,因为对于android运行时的启动来说,它是在Init进程之后,zygote进程启动之后,初始化之前初始化的,所以此时它的入口和zygote的入口一致,即app_main.cpp的main函数,代码如下:

//app_main.cpp
int main(int argc, char* const argv[]){
...
//AppRuntime继承自AndroidRuntime
AppRuntime runtime(argv[0], computeArgBlockSize(argc, argv));
...
if (zygote) {//如果init.rc配置中有--Zygote,参数为com.android.internal.os.ZygoteInit
runtime.start("com.android.internal.os.ZygoteInit", args);
} else if (className) {//否则参数为com.android.internal.os.RuntimeInit
runtime.start("com.android.internal.os.RuntimeInit", args);
}else{
//显示命令的用法说明
app_usage();
}
...
}


首先创建一个AppRuntime对象,接着调用它的start方法,而此start方法在父类AndroidRuntime中进行了定义,并且此处的参数为com.android.internal.os.ZygoteInit,而对于两种不同的参数而言,只是最后启动的类不一样,如果有–zygote参数,其最后会启动ZygoteInit类,否则就会执行RuntimeInit类,继续追踪start方法。

//AndroidRuntime.cpp
void AndroidRuntime::start(const char* className, const Vector<String8>& options){
...
//启动虚拟机
if (startVm(&mJavaVM, &env) != 0) {
return;
}
//模板方法模式,只是为了创建VM之后释放slashClassName的内存
onVmCreated(env);
//注册Android JNI函数
if (startReg(env) < 0) {
ALOGE("Unable to register all android natives\n");
return;
}
...
//解析类名
char* slashClassName = toSlashClassName(className);
//找到需要启动的java类
jclass startClass = env->FindClass(slashClassName);
if (startClass == NULL) {
ALOGE("JavaVM unable to locate class '%s'\n", slashClassName);
} else {
//得到指定类中指定方法的ID,这里得到的是RuntimeInit.main()的方法ID
jmethodID startMeth = env->GetStaticMethodID(startClass, "main",
"([Ljava/lang/String;)V");
if (startMeth == NULL) {
ALOGE("JavaVM unable to find main() in '%s'\n", className);
} else {
//调用上面得到的方法ID和相关参数,即调用Java类ZygoteInit.main();
env->CallStaticVoidMethod(startClass, startMeth, strArray);
...
}
}
...
}


首先分析Java虚拟机的启动:由以上代码可知,在start方法中,调用startVm()方法进行虚拟机的启动,startVm()的具体代码如下:

//AndroidRuntime.cpp
int AndroidRuntime::startVm(JavaVM** pJavaVM, JNIEnv** pEnv, bool zygote){
...
//读取第一个参数指定的属性操作到buffer,并设置默认的参数
parseRuntimeOption("dalvik.vm.stack-trace-file", stackTraceFileBuf,
"-Xstacktracefile:");
...
//添加相应的handler操作
addOption("exit", (void*) runtime_exit);
...
//读取作为dex2oat compiler运行时操作
parseCompilerOption(dex2oat_isa_variant_key, dex2oat_isa_variant,
"--instruction-set-variant=", "-Xcompiler-option");
// 拷贝特性
sprintf(dex2oat_isa_features_key, "dalvik.vm.isa.%s.features", instruction_set);
parseCompilerOption(dex2oat_isa_features_key, dex2oat_isa_features,
"--instruction-set-features=", "-Ximage-compiler-option");
parseCompilerOption(dex2oat_isa_features_key, dex2oat_isa_features,
"--instruction-set-features=", "-Xcompiler-option");
...
//初始化虚拟机
if (JNI_CreateJavaVM(pJavaVM, pEnv, &initArgs) < 0) {
ALOGE("JNI_CreateJavaVM failed\n");
return -1;
}
...
}


由代码可知:首先进行一系列的属性读取到buffer的操作,如JIT相关的options,DexClassLoader的相关options等,并将其添加到操作数组容器里面,最后再调用JNI_CreateJavaVM方法进行VM的创建,如果此调用发挥成功的话,那么我们就能够济宁JNI调用了,继续看此方法的代码,它的定义出现在DdmConnection的start方法里:

//DdmConnection.cpp
void DdmConnection::start(const char* name) {
...
//定义JNI_CreateJavaVM方法
jint (*JNI_CreateJavaVM)(JavaVM** p_vm, JNIEnv** p_env, void* vm_args);
//从libart_dso库中解析JNI_CreateJavaVM方法
JNI_CreateJavaVM = reinterpret_cast<decltype(JNI_CreateJavaVM)>(
dlsym(libart_dso, "JNI_CreateJavaVM"));
//定义registerNatives方法
jint (*registerNatives)(JNIEnv* env, jclass clazz);
//从libandroid_runtime_dso库中解析registerNatives方法
registerNatives = reinterpret_cast<decltype(registerNatives)>(
dlsym(libandroid_runtime_dso,
"Java_com_android_internal_util_WithFramework_registerNatives"));

...
}


JNI_CreateJavaVM方法是从libart_dso库中解析得到的,同样后面要用到的registerNatives方法从事libandroid_runtime_dso库中解析得到的,而这两个库也是在DdmConnection的start方法中打开的,代码如下:

void* libart_dso = dlopen("libart.so", RTLD_NOW);
ALOGE_IF(!libart_dso, "DdmConnection: %s", dlerror());
void* libandroid_runtime_dso = dlopen("libandroid_runtime.so", RTLD_NOW);
ALOGE_IF(!libandroid_runtime_dso, "DdmConnection: %s", dlerror());


而当JNI_CreateJavaVM函数执行成功后,当前本地线程已经把自己的控制权交给JVM,而具体的JNI_CreateJavaVM方法的实现在libart_dso库中,此处不做深究。至此,成功创建了Java虚拟机,而startVm方法也分析结束。

接着分析onVmCreated方法,它使用的是模板方法的设计模式,在androidRuntime中声明并使用,而具体的实现在appRuntime子类中进行,其代码如下:

virtual void onVmCreated(JNIEnv* env){
if(mClassName.isEmpty()){
return;//Zygote.Nothing to do here
}
char* slashClassName = toSlashClassName(mClassName.string());
mClass = env->FndClass(slashClassName);
if(mClass == NULL){
ALOGE("ERROR:could not find class '%s'\n",mClassName.string);
}
free(slashClassName);
mClass = reinterpret<jclass>(env->NewGlobalRef(mClass));
}


只是简单根据类名获取了类,并释放了类名,所以此处不做过多的分析,接下来分析startReg()方法,方法定义代码如下:

/*static*/ int AndroidRuntime::startReg(JNIEnv* env)
/*
* This hook causes all future threads created in this process to be
* attached to the JavaVM.  (This needs to go away in favor of JNI
* Attach calls.)
*/
androidSetCreateThreadFunc((android_create_thread_fn) javaCreateThreadEtc);

ALOGV("--- registering native functions ---\n");

/*
* Every "register" function calls one or more things that return
* a local reference (e.g. FindClass).  Because we haven't really
* started the VM yet, they're all getting stored in the base frame
* and never released.  Use Push/Pop to manage the storage.
*/
env->PushLocalFrame(200);

if (register_jni_procs(gRegJNI, NELEM(gRegJNI), env) < 0) {
env->PopLocalFrame(NULL);
return -1;
}
env->PopLocalFrame(NULL);
...
}


startReg方法主要的作用是进行android JNI函数的注册,从代码可知:它调用函数register_jni_procs()方法将gRegJNI中的方法注册到虚拟机,而gRegJNI中的Native方法如下:

static const RegJNIRec gRegJNI[] = {
REG_JNI(register_com_android_internal_os_RuntimeInit),
REG_JNI(register_android_os_SystemClock),
REG_JNI(register_android_util_EventLog),
REG_JNI(register_android_util_Log),
REG_JNI(register_android_content_AssetManager),
REG_JNI(register_android_content_StringBlock),
REG_JNI(register_android_content_XmlBlock),
REG_JNI(register_android_emoji_EmojiFactory),
REG_JNI(register_android_text_AndroidCharacter),
REG_JNI(register_android_text_StaticLayout),
REG_JNI(register_android_text_AndroidBidi),
REG_JNI(register_android_view_InputDevice),
REG_JNI(register_android_view_KeyCharacterMap),
REG_JNI(register_android_os_Process),
REG_JNI(register_android_os_SystemProperties),
REG_JNI(register_android_os_Binder),
REG_JNI(register_android_os_Parcel),
REG_JNI(register_android_nio_utils),
REG_JNI(register_android_graphics_Graphics),
REG_JNI(register_android_view_DisplayEventReceiver),
REG_JNI(register_android_view_RenderNode),
REG_JNI(register_android_view_RenderNodeAnimator),
REG_JNI(register_android_view_GraphicBuffer),
REG_JNI(register_android_view_DisplayListCanvas),
REG_JNI(register_android_view_HardwareLayer),
REG_JNI(register_android_view_ThreadedRenderer),
REG_JNI(register_android_view_Surface),
REG_JNI(register_android_view_SurfaceControl),
REG_JNI(register_android_view_SurfaceSession),
REG_JNI(register_android_view_TextureView),
REG_JNI(register_com_android_internal_view_animation_NativeInterpolatorFactoryHelper),
REG_JNI(register_com_google_android_gles_jni_EGLImpl),
REG_JNI(register_com_google_android_gles_jni_GLImpl),
REG_JNI(register_android_opengl_jni_EGL14),
REG_JNI(register_android_opengl_jni_EGLExt),
REG_JNI(register_android_opengl_jni_GLES10),
REG_JNI(register_android_opengl_jni_GLES10Ext),
REG_JNI(register_android_opengl_jni_GLES11),
REG_JNI(register_android_opengl_jni_GLES11Ext),
REG_JNI(register_android_opengl_jni_GLES20),
REG_JNI(register_android_opengl_jni_GLES30),
REG_JNI(register_android_opengl_jni_GLES31),
REG_JNI(register_android_opengl_jni_GLES31Ext),

REG_JNI(register_android_graphics_Bitmap),
REG_JNI(register_android_graphics_BitmapFactory),
REG_JNI(register_android_graphics_BitmapRegionDecoder),
REG_JNI(register_android_graphics_Camera),
REG_JNI(register_android_graphics_CreateJavaOutputStreamAdaptor),
REG_JNI(register_android_graphics_Canvas),
REG_JNI(register_android_graphics_CanvasProperty),
REG_JNI(register_android_graphics_ColorFilter),
REG_JNI(register_android_graphics_DrawFilter),
REG_JNI(register_android_graphics_FontFamily),
REG_JNI(register_android_graphics_Interpolator),
REG_JNI(register_android_graphics_LayerRasterizer),
REG_JNI(register_android_graphics_MaskFilter),
REG_JNI(register_android_graphics_Matrix),
REG_JNI(register_android_graphics_Movie),
REG_JNI(register_android_graphics_NinePatch),
REG_JNI(register_android_graphics_Paint),
REG_JNI(register_android_graphics_Path),
REG_JNI(register_android_graphics_PathMeasure),
REG_JNI(register_android_graphics_PathEffect),
REG_JNI(register_android_graphics_Picture),
REG_JNI(register_android_graphics_PorterDuff),
REG_JNI(register_android_graphics_Rasterizer),
REG_JNI(register_android_graphics_Region),
REG_JNI(register_android_graphics_Shader),
REG_JNI(register_android_graphics_SurfaceTexture),
REG_JNI(register_android_graphics_Typeface),
REG_JNI(register_android_graphics_Xfermode),
REG_JNI(register_android_graphics_YuvImage),
REG_JNI(register_android_graphics_pdf_PdfDocument),
REG_JNI(register_android_graphics_pdf_PdfEditor),
REG_JNI(register_android_graphics_pdf_PdfRenderer),

REG_JNI(register_android_database_CursorWindow),
REG_JNI(register_android_database_SQLiteConnection),
REG_JNI(register_android_database_SQLiteGlobal),
REG_JNI(register_android_database_SQLiteDebug),
REG_JNI(register_android_os_Debug),
REG_JNI(register_android_os_FileObserver),
REG_JNI(register_android_os_MessageQueue),
REG_JNI(register_android_os_SELinux),
REG_JNI(register_android_os_Trace),
REG_JNI(register_android_os_UEventObserver),
REG_JNI(register_android_net_LocalSocketImpl),
REG_JNI(register_android_net_NetworkUtils),
REG_JNI(register_android_net_TrafficStats),
REG_JNI(register_android_os_MemoryFile),
REG_JNI(register_com_android_internal_os_Zygote),
REG_JNI(register_com_android_internal_util_VirtualRefBasePtr),
REG_JNI(register_android_hardware_Camera),
REG_JNI(register_android_hardware_camera2_CameraMetadata),
REG_JNI(register_android_hardware_camera2_legacy_LegacyCameraDevice),
REG_JNI(register_android_hardware_camera2_legacy_PerfMeasurement),
REG_JNI(register_android_hardware_camera2_DngCreator),
REG_JNI(register_android_hardware_Radio),
REG_JNI(register_android_hardware_SensorManager),
REG_JNI(register_android_hardware_SerialPort),
REG_JNI(register_android_hardware_SoundTrigger),
REG_JNI(register_android_hardware_UsbDevice),
REG_JNI(register_android_hardware_UsbDeviceConnection),
REG_JNI(register_android_hardware_UsbRequest),
REG_JNI(register_android_hardware_location_ActivityRecognitionHardware),
REG_JNI(register_android_media_AudioRecord),
REG_JNI(register_android_media_AudioSystem),
REG_JNI(register_android_media_AudioTrack),
REG_JNI(register_android_media_JetPlayer),
REG_JNI(register_android_media_RemoteDisplay),
REG_JNI(register_android_media_ToneGenerator),

REG_JNI(register_android_opengl_classes),
REG_JNI(register_android_server_NetworkManagementSocketTagger),
REG_JNI(register_android_ddm_DdmHandleNativeHeap),
REG_JNI(register_android_backup_BackupDataInput),
REG_JNI(register_android_backup_BackupDataOutput),
REG_JNI(register_android_backup_FileBackupHelperBase),
REG_JNI(register_android_backup_BackupHelperDispatcher),
REG_JNI(register_android_app_backup_FullBackup),
REG_JNI(register_android_app_ActivityThread),
REG_JNI(register_android_app_NativeActivity),
REG_JNI(register_android_view_InputChannel),
REG_JNI(register_android_view_InputEventReceiver),
REG_JNI(register_android_view_InputEventSender),
REG_JNI(register_android_view_InputQueue),
REG_JNI(register_android_view_KeyEvent),
REG_JNI(register_android_view_MotionEvent),
REG_JNI(register_android_view_PointerIcon),
REG_JNI(register_android_view_VelocityTracker),

REG_JNI(register_android_content_res_ObbScanner),
REG_JNI(register_android_content_res_Configuration),

REG_JNI(register_android_animation_PropertyValuesHolder),
REG_JNI(register_com_android_internal_content_NativeLibraryHelper),
REG_JNI(register_com_android_internal_net_NetworkStatsFactory),
};


由上可知,在系统建立androidRuntime的时候,创建Java虚拟机,并将系统中一些JNI函数注册到Java虚拟机中,此后只需要通过JNI的方法就可以调用这些Native方法,此外JNI函数的注册还有一种方法,即通过静态代码块System.LoadLibrary(“…”);来加载自定义的JNI方法。至此,其实Runtime已经初始化完成了。,其时序图如下:



4、非zygote模式的RuntimeInit分析

非zygote模式下,app_process命令行的输入参数没有了–zygote等,所以className变成了com.android.internal.os.RuntimeInit,但是前面的流程还是差不多,只是在AndroidRuntime的start方法中的最后有代码:

//AndroidRuntime.cpp
void AndroidRuntime::start(const char* className, const Vector<String8>& options){
...
//调用上面得到的方法ID和相关参数,这里调用的是RuntimeInit.main();
env->CallStaticVoidMethod(startClass, startMeth, strArray);
...
}


它会根据输入的参数com.android.internal.os.ZygoteInit和RuntimeInit,通过反射以及JNI,找到相应的类,并调用类的main方法,本文是在Init进程中来进行Runtime的初始化并启动Zygote进程(Java域的第一个进程)的,它的启动分析请参考我的文章android6.0源码分析之Zygote进程分析另外,系统提供app_process的命令,我们可以利用此命令来实现很多供我们自己开发、测试、定制一些特殊的程序,给开发带来了很大的便利。所以,接下来继续分析非zygote模式下的RuntimeInit,首先分析RuntimeInit类的main方法:

//RuntimeInit.java
public static final void main(String[] argv){
//看到没有,Ddms使能,我们调试时要用到的
enaleDdms();
if(argv.length == 2&&argv[1].equals("application")){
//设置系统输出System.out和System.err的Log Stream
redirectLogStreams();
}else{}
...
commonInit();
nativeFinishInit();
}


commonInit方法主要就是初始化VM里的线程的默认Handler,初始化Log Manager以及一些属性的初始化等,接着看nativeFinishInit方法:

//AndroidRuntime.cpp
static void com_android_internal_os_RuntimeInit_nativeFinishInit(JNIEnv* env,jobject clazz){
gCurRuntime->onStarted();
}


onStarted方法的实现在app_main.cpp的AppRuntime类中:

//app_main.cpp
virtual void onStarted(){
//在进程中开启线程池
sp<ProcessState> proc = ProcessState::self();
proc->startThreadPool();
//获取运行时对象
AndroidRuntime* ar = AndroidRuntime::getRuntime();
//调用mClassName的main方法
ar->callMain(mClassName,mClass,mArgs);
//停止线程池
IPCThreadState::self()->stopProcess();
}


其中最主要的就是callMain的调用:

//AndroidRuntime
status_t AndroidRuntime::callMain(const String8& className,jclass clazz,const Vector<String8>&
args){
...
env = getJNIEnv();
...
env.CallStaticVoidMethod(clazz,methodId,strArray);
return NO_ERROR;
}


最后,在进行相应的RuntimeInit初始化后,会执行命令中相应测试应用(或命令)的main方法。其时序图如下:

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息