您的位置:首页 > 运维架构 > Linux

Linux Platform devices 平台设备驱动

2016-06-08 01:31 633 查看
设备总线驱动模型:http://blog.csdn.net/lizuobin2/article/details/51570196

本文主要参考:http://www.wowotech.net/device_model/platform_device.html

platform平台设备驱动是基于设备总线驱动模型的,它只不过是将 device 进一步封装成为 platform_device,将 device_driver 进一步封装成为 platform_device_driver,前面已经分析过设备总线驱动模型,关于device 与 device_driver 的注册过程以及它们在sysfs文件系统中的层次关系就不在分析,本文重点分析platform平台设备驱动与设备总线驱动模型相比较新增添的那些东西。



在Linux设备模型的抽象中,存在着一类称作“Platform Device”的设备,内核是这样描述它们的(Documentation/driver-model/platform.txt):

Platform devices are devices that typically appear as autonomous entities in the system. This includes legacy port-based devices and host bridges to peripheral buses, and most controllers integrated into system-on-chip platforms. What they usually have
in common is direct addressing from a CPU bus. Rarely, a platform_device will be connected through a segment of some other kind of bus; but its registers will still be directly addressable.

概括来说,Platform设备包括:基于端口的设备(已不推荐使用,保留下来只为兼容旧设备,legacy);连接物理总线的桥设备;集成在SOC平台上面的控制器;连接在其它bus上的设备(很少见)。等等。

这些设备有一个基本的特征:可以通过CPU bus直接寻址(例如在嵌入式系统常见的“寄存器”)。因此,由于这个共性,内核在设备模型的基础上(device和device_driver),对这些设备进行了更进一步的封装,抽象出paltform bus、platform device和platform driver,以便驱动开发人员可以方便的开发这类设备的驱动。

可以说,paltform设备对Linux驱动工程师是非常重要的,因为我们编写的大多数设备驱动,都是为了驱动plaftom设备。

platform_bus_type

我们知道,在设备总线驱动模型的中,BUS像一个月老一样,通过它的match函数,将注册到bus中的device与driver进行配对,那么每一个不同的bus 都有自己的match函数,我们来看看platform_bus_type.

struct bus_type platform_bus_type = {
.name		= "platform",
.dev_attrs	= platform_dev_attrs,
.match		= platform_match,
.uevent		= platform_uevent,
.pm		= &platform_dev_pm_ops,
};
static int platform_match(struct device *dev, struct device_driver *drv)
{
struct platform_device *pdev = to_platform_device(dev);
struct platform_driver *pdrv = to_platform_driver(drv);

/* match against the id table first */
if (pdrv->id_table)
return platform_match_id(pdrv->id_table, pdev) != NULL;

/* fall-back to driver name match */
return (strcmp(pdev->name, drv->name) == 0);
}


如果platform_device_driver中定义了id_table,则调用 platform_match_id 进行匹配

举个例子:

static struct platform_device_id s3c24xx_driver_ids[] = {
{
.name		= "s3c2410-i2c",
.driver_data	= TYPE_S3C2410,
}, {
.name		= "s3c2440-i2c",
.driver_data	= TYPE_S3C2440,
}, { },
};
struct platform_device s3c_device_i2c0 = {
.name		  = "s3c2410-i2c",
#ifdef CONFIG_S3C_DEV_I2C1
.id		  = 0,
#else
.id		  = -1,
#endif
.num_resources	  = ARRAY_SIZE(s3c_i2c_resource),
.resource	  = s3c_i2c_resource,
};
static const struct platform_device_id *platform_match_id(struct platform_device_id *id, struct platform_device *pdev)
{
while (id->name[0]) {
if (strcmp(pdev->name, id->name) == 0) {
pdev->id_entry = id;
return id;
}
id++;
}
return NULL;
}
显然,platform_match_id 的作用就是遍历整个 Id_table 数组,寻找是否有与 platform_device->name 同名的,如果有,则返回这个 Platform_device_id ,使用Id_table 打破了原本设备总线驱动模型,一个 device 只能用与一个 device_driver 配对的局限性。现在一个platform_device_driver
可以与多个platform_device配对。


如果没有,则只是根据 platform_device_driver->name 与 platform_device->name 进行比较,这也就是老师为啥在写平台设备驱动程序的时候经常说,“将驱动注册到内核中去,如果有同名设备,则调用driver->probe函数....”。

从device封装而来的platform_device

struct platform_device {
const char	* name;
int		id;
struct device	dev;
u32		num_resources;
struct resource	* resource;

struct platform_device_id	*id_entry;

/* arch specific additions */
struct pdev_archdata	archdata;
};
name,设备的名称,该名称在设备注册时,会拷贝到dev.init_name中。

dev,真正的设备,通过 container_of ,就能找到整个platform_device ,访问其它成员,如后面要提到的 resource

num_resources、resource,该设备的资源描述,由struct resource(include/linux/ioport.h)结构抽象。

在Linux中,系统资源包括I/O、Memory、Register、IRQ、DMA、Bus等多种类型。这些资源大多具有独占性,不允许多个设备同时使用,因此Linux内核提供了一些API,用于分配、管理这些资源。

当某个设备需要使用某些资源时,只需利用struct resource组织这些资源(如名称、类型、起始、结束地址等),并保存在该设备的resource指针中即可。然后在设备probe时,设备需求会调用资源管理接口,分配、使用这些资源。而内核的资源管理逻辑,可以判断这些资源是否已被使用、是否可被使用等等。

struct resource {
resource_size_t start;
resource_size_t end;
const char *name;
unsigned long flags;
struct resource *parent, *sibling, *child;
};
static struct resource led_resource[] = {	//jz2440的参数,驱动未测试
[0] = {
.start = 0x56000010,
.end   = 0x56000010 + 8 - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = 5,
.end   = 5,
.flags = IORESOURCE_IRQ,
},
};
static struct platform_device led_dev = {
.name = "myled",	//设备名字 与 驱动相匹配
.id	  = -1,
.num_resources = ARRAY_SIZE(led_resource),
.resource = led_resource,

.dev = {
.release = led_release,
//.devt = MKDEV(252, 1),
},
};


从 device_driver 封装而来的platform_device_dirver

struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);
int (*suspend)(struct platform_device *, pm_message_t state);
int (*resume)(struct platform_device *);
struct device_driver driver;
struct platform_device_id *id_table;
};
int platform_driver_register(struct platform_driver *drv)
{
drv->driver.bus = &platform_bus_type;
if (drv->probe)
drv->driver.probe = platform_drv_probe;
if (drv->remove)
drv->driver.remove = platform_drv_remove;
if (drv->shutdown)
drv->driver.shutdown = platform_drv_shutdown;

return driver_register(&drv->driver);
}
struct platform_driver结构和struct device_driver非常类似,上边的platform_drv_probe、platform_drv_remove、platform_drv_shutdown,只不过稍作转换调用platform_driver中的probe、remove、shutdown函数,举个例子稍微看一下

static int platform_drv_probe(struct device *_dev)
{
struct platform_driver *drv = to_platform_driver(_dev->driver);
struct platform_device *dev = to_platform_device(_dev);

return drv->probe(dev);
}


Platform Device提供的API
/* include/linux/platform_device.h */
extern int platform_device_register(struct platform_device *);
extern void platform_device_unregister(struct platform_device *);

extern void arch_setup_pdev_archdata(struct platform_device *);
extern struct resource *platform_get_resource(struct platform_device *, unsigned int, unsigned int);
extern int platform_get_irq(struct platform_device *, unsigned int);
extern struct resource *platform_get_resource_byname(struct platform_device *, unsigned int, const char *);
extern int platform_get_irq_byname(struct platform_device *, const char *);
extern int platform_add_devices(struct platform_device **, int);

extern struct platform_device *platform_device_register_full(const struct platform_device_info *pdevinfo);

static inline struct platform_device *platform_device_register_resndata(
struct device *parent, const char *name, int id,
const struct resource *res, unsigned int num,
const void *data, size_t size)

static inline struct platform_device *platform_device_register_simple(
const char *name, int id,
const struct resource *res, unsigned int num)

static inline struct platform_device *platform_device_register_data(
struct device *parent, const char *name, int id,
const void *data, size_t size)

extern struct platform_device *platform_device_alloc(const char *name, int id);
extern int platform_device_add_resources(struct platform_device *pdev,
const struct resource *res,
unsigned int num);
extern int platform_device_add_data(struct platform_device *pdev,
const void *data, size_t size);
extern int platform_device_add(struct platform_device *pdev);
extern void platform_device_del(struct platform_device *pdev);
extern void platform_device_put(struct platform_device *pdev);
platform_device_register、platform_device_unregister,Platform设备的注册/注销接口,和底层的device_register等接口类似。

arch_setup_pdev_archdata,设置platform_device变量中的archdata指针。

platform_get_resource、platform_get_irq、platform_get_resource_byname、platform_get_irq_byname,通过这些接口,可以获取platform_device变量中的resource信息,以及直接获取IRQ的number等等。

platform_device_register_full、platform_device_register_resndata、platform_device_register_simple、platform_device_register_data,其它形式的设备注册。调用者只需要提供一些必要的信息,如name、ID、resource等,Platform模块就会自动分配一个struct platform_device变量,填充内容后,注册到内核中。

platform_device_alloc,以name和id为参数,动态分配一个struct platform_device变量。

platform_device_add_resources,向platform device中增加资源描述。

platform_device_add_data,向platform device中添加自定义的数据(保存在pdev->dev.platform_data指针中)。

platform_device_add、platform_device_del、platform_device_put,其它操作接口。

Platform Driver提供的API

platform_driver_registe、platform_driver_unregister,platform driver的注册、注销接口。

platform_driver_probe,主动执行probe动作。

platform_set_drvdata、platform_get_drvdata,设置或者获取driver保存在device变量中的私有数据。

懒人API

extern struct platform_device *platform_create_bundle(
struct platform_driver *driver, int (*probe)(struct platform_device *),
struct resource *res, unsigned int n_res,
const void *data, size_t size);
只要提供一个platform_driver(要把driver的probe接口显式的传入),并告知该设备占用的资源信息,platform模块就会帮忙分配资源,并执行probe操作。对于那些不需要热拔插的设备来说,这种方式是最省事的了。

简单一例:

开发板:Mini2440

内核版本:2.6.32.2

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/irq.h>
#include <asm/uaccess.h>
#include <linux/input.h>
#include <linux/platform_device.h>
// 设备资源
static struct resource led_resource[] = {	//jz2440的参数,驱动未测试
[0] = {
.start = 0x56000010,
.end   = 0x56000010 + 8 - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = 5,
.end   = 5,
.flags = IORESOURCE_IRQ,
},
};

static void led_release(struct device *dev){

}

// 创建一个设备
static struct platform_device led_dev = {
.name = "myled",	//设备名字 与 驱动相匹配
.id	  = -1,
.num_resources = ARRAY_SIZE(led_resource),
.resource = led_resource,

.dev = {
.release = led_release,
//.devt = MKDEV(252, 1),
},
};

static int led_dev_init(void){

//向bus注册led_dev match drv链表进行配对
platform_device_register(&led_dev);
return 0;
}

static void led_dev_exit(void){
platform_device_unregister(&led_dev);
}

module_init(led_dev_init);
module_exit(led_dev_exit);
MODULE_LICENSE("GPL");


#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/irq.h>
#include <asm/uaccess.h>

#include <linux/platform_device.h>
#include <linux/io.h>

static int major;

static struct class *cls;
static struct device *dev;

static volatile unsigned long *gpio_con;
static volatile unsigned long *gpio_dat;
static int pin;

static int led_open(struct inode *inode, struct file *file){

*gpio_con &= ~(0x03 << (pin*2));
*gpio_con |=  (0x01 << (pin*2));
return 0;
}

static ssize_t led_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos){

int val;
copy_from_user(&val, buf, count);

if(val == 1){

*gpio_dat &= ~(1<<pin);
}else{

*gpio_dat &=  (1<<pin);
}

return 0;
}

static struct file_operations led_fops = {

.owner = THIS_MODULE,
.open  = led_open,
.write = led_write,
};

static int led_probe(struct platform_device *pdev){

struct resource *res;
// 最后一个参数 0 表示第1个该类型的资源
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
gpio_con = ioremap(res->start, res->end - res->start + 1);
gpio_dat = gpio_con + 1;

res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
pin = res->start;

printk("led_probe, found led\n");

// 注册设备驱动 创建设备节点
major = register_chrdev(0, "myled", &led_fops);
// 创建类
cls = class_create(THIS_MODULE, "myled");
// 创建设备节点
dev = device_create(cls, NULL, MKDEV(major, 0), NULL, "led");

return 0;
}

static int led_remove(struct platform_device *pdev){

printk("led_remove, remove led\n");
// 删除设备节点
device_unregister(dev);
// 销毁类
class_destroy(cls);
// 取消注册设备驱动
unregister_chrdev(major, "myled");
// 取消内存映射
iounmap(gpio_con);

return 0;
}

struct platform_driver led_drv = {

.probe 	= led_probe,	//匹配到dev之后调用probe
.remove = led_remove,
.driver = {
.name = "myled",
},
};

static int led_drv_init(void){

platform_driver_register(&led_drv);
return 0;
}

static void led_drv_exit(void){

platform_driver_unregister(&led_drv);
}

module_init(led_drv_init);
module_exit(led_drv_exit);
MODULE_LICENSE("GPL");
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: