您的位置:首页 > 运维架构 > Linux

Linux下开发环境(gcc/g++/makefile/gdb)

2016-06-04 23:37 387 查看
先决条件

gcc 这是c语言的编译器

从前,我写了一个Linux多线程到程序Main.c,使用gcc -g Main.c -lpthread -o Main编译,就出现来未安装gcc的提示,我按照提示输入来几个y,然后就把gcc装好了。但是,其实,在Red Hat Enterprise Linux 6上,默认已经安装好gcc,可以编译C语言程序了。

gcc-c++ 扩展为c++编译器

This package adds C++ support to the GNU C compiler. It includes support for most of the current C++ specification, including templates and exception handling. It does not include the standard C++ library.

libstdc++-v3 The GNU Standard C++ Library v3

libstdc++-v3 is developed and released as part of GCC, separate snapshots are no longer made available. The libstdc++-v3 sources are included with the GCC sources and can be downloaded from the GCC FTP area or from any of the GCC mirror sites.

一、gcc与g++编译流程

预处理preprocessing --> 编译compilation --> 汇编assembly --> 链接linking

举例:
[hadoop@sam1 testGCC]$ cat hello.c


Cpp代码 
#include<stdio.h>
int main(){
printf("in C");
return 0;
}


(0)一步到位的编译:

[hadoop@sam1 testGCC]$ ls
hello.c
[hadoop@sam1 testGCC]$ gcc hello.c -o hello
[hadoop@sam1 testGCC]$ ./hello


可以使用-O选项告诉GCC对源代码进行基本优化,使程序执行更快,可以替换使用如下命令:
gcc hello.c -o hello -O0 //没有优化
gcc hello.c -o hello -O1 //缺省,主要进行跳转和延迟退栈两种优化
gcc hello.c -o hello -O2 //除了完成-O1 的优化之外,还进行一些额外的指令调整工作
gcc hello.c -o hello -O3 //除了完成-O2 的优化之外,还进行包括循环展开和其他一些与处理特性相关的优化工作


(1)预处理:源文件hello.c --> 预处理文件hello.i。只激活预处理,不生成文件,需要把它重定向到一个输出文件(预处理器的输出默认被送到标准输出,而非文件中)。
[hadoop@sam1 testGCC]$ ls
hello.c
[hadoop@sam1 testGCC]$ gcc -E hello.c -o hello.i


注:

hello.c后缀为c表示:

C source code which must be preprocessed.

-E Stop after the preprocessing stage; do not run the compiler proper. The output is in the form of preprocessed source code, which is sent to the standard output.

Input files which don't require preprocessing are ignored.

(2)编译:预处理文件hello.i --> 汇编文件hello.s。激活预处理,编译,把文件编译成汇编代码。

[hadoop@sam1 testGCC]$ ls
hello.c hello.i
[hadoop@sam1 testGCC]$ gcc -S hello.i -o hello.s


注:

hello.s:

Assembler code. 经过编译后产生了汇编代码

长这个样子:

汇编代码 
.file "hello.c"
.section .rodata
.LC0:
.string "in C"
.text
.globl main
.type main, @function
main:
pushl %ebp
movl %esp, %ebp
andl $-16, %esp
subl $16, %esp
movl $.LC0, %eax
movl %eax, (%esp)
call printf
movl $0, %eax
leave
ret
.size main, .-main
.ident "GCC: (GNU) 4.5.1 20100924 (Red Hat 4.5.1-4)"
.section .note.GNU-stack,"",@progbits

-S Stop after the stage of compilation proper; do not assemble. The output is in the form of an assembler code file for each non-assembler input file specified.
By default, the assembler file name for a source file is made by replacing the suffix .c, .i, etc., with .s.


(3)汇编:汇编文件hello.s --> .o的汇编文件。激活预处理,编译和汇编,把程序做成obj文件。

[hadoop@sam1 testGCC]$ ls
hello.c hello.i hello.s
[hadoop@sam1 testGCC]$ gcc -c hello.s -o hello.o

注:
-c Compile or assemble the source files, but do not link. The linking stage simply is not done. The ultimate output is in the form of an object file for each source file.
By default, the object file name for a source file is made by replacing the suffix .c, .i, .s, etc., with .o.
Unrecognized input files, not requiring compilation or assembly, are ignored.


(4)链接:.o的汇编文件 --> 最终的可执行文件hello。
[hadoop@sam1 testGCC]$ ls
hello.c hello.i hello.o hello.s
[hadoop@sam1 testGCC]$ gcc hello.o -o hello
[hadoop@sam1 testGCC]$ ./hello
in C


注:

以上几个参数实际上指定编译在哪个stage退出,不在乎开始指定的文件是什么形式

-E 截止到预编译完成。

-S 截止到产生汇编文件。

-c 截止到产生目标文件,不链接。

不带参数 截止到最终产生链接好的可执行文件。

另外,gcc -g 这个参数让编译器在目标文件中加上了调试信息,具体表现为ELF格式目标文件中多出了很多debug段,通过readelf -S ***.o查看,多出了诸如如下的这些调试段:

[27] .debug_aranges PROGBITS 00000000 0006e4 000020 00 0 0 1

[28] .debug_pubnames PROGBITS 00000000 000704 00004f 00 0 0 1

[29] .debug_info PROGBITS 00000000 000753 0000cb 00 0 0 1

[30] .debug_abbrev PROGBITS 00000000 00081e 00008d 00 0 0 1

[31] .debug_line PROGBITS 00000000 0008ab 000046 00 0 0 1

[32] .debug_frame PROGBITS 00000000 0008f4 000054 00 0 0 4

[33] .debug_str PROGBITS 00000000 000948 000095 01 MS 0 0 1

二、一个简单工程的编译——makefile(3 个.cpp 文件,2 个.h 文件)

main.cpp

Cpp代码 
#include<iostream>
#include "printf1.h"
#include "printf2.h"
int main(){
printf1();
printf2();
}


printf1.h

Cpp代码 
void printf1();


printf1.cpp

Cpp代码 
#include <iostream>
#include "printf1.h"
using namespace std;

void printf1(){
cout<<"printf1"<<endl;
}


printf2.h

Cpp代码 
void printf2();


printf2.cpp

Cpp代码 
#include <iostream>
#include "printf2.h"
using namespace std;

void printf2(){
cout<<"printf2"<<endl;
}


常规编译:

Shell代码 
[hadoop@sam1 testGCC]$ ls
main.cpp printf1.cpp printf1.h printf2.cpp printf2.h
[hadoop@sam1 testGCC]$ g++ -c printf1.cpp ==> 截止到生成(未链接的)目标文件printf1.o
[hadoop@sam1 testGCC]$ g++ -c printf2.cpp ==> 截止到生成(未链接的)目标文件printf2.o
[hadoop@sam1 testGCC]$ g++ -c main.cpp ==> 截止到生成(未链接的)目标文件main.o
[hadoop@sam1 testGCC]$ ls
main.cpp printf1.cpp printf1.o printf2.h
main.o printf1.h printf2.cpp printf2.o
[hadoop@sam1 testGCC]$ g++ printf1.o printf2.o main.o -o out ==>将3个obj文件链接到一个可执行文件上
[hadoop@sam1 testGCC]$ ./out
printf1
printf2


makefile编译:

Shell代码 
[hadoop@sam1 testGCC]$ ls
main.cpp printf1.cpp printf1.h printf2.cpp printf2.h
[hadoop@sam1 testGCC]$ vim makefile
==>见下面makefile文件内容
[hadoop@sam1 testGCC]$ make
g++ -c main.cpp #默认生成main.o
g++ -c printf1.cpp
g++ -c printf2.cpp
g++ main.o printf1.o printf2.o -o out
[hadoop@sam1 testGCC]$ ls
main.cpp makefile printf1.cpp printf1.o printf2.h
main.o out printf1.h printf2.cpp printf2.o
[hadoop@sam1 testGCC]$ ./out
printf1
printf2
[hadoop@sam1 testGCC]$ make clean
rm -rf *.o out
[hadoop@sam1 testGCC]$ ls
main.cpp makefile printf1.cpp printf1.h printf2.cpp printf2.h


makefile文件:

Makefile代码 收藏代码
out: main.o printf1.o printf2.o #生成out需要依赖的文件
g++ main.o printf1.o printf2.o -o out
main.o: main.cpp printf1.h printf2.h #生成main.o需要依赖的文件
g++ -c main.cpp #默认生成main.o
printf1.o: printf1.h printf1.cpp
g++ -c printf1.cpp
printf2.o: printf2.h printf2.cpp
g++ -c printf2.cpp
.PHONY: clean
clean:
rm -rf *.o out


二、Makefile文件的格式(具体参见http://www.ruanyifeng.com/blog/2015/02/make.html)

构建规则都写在Makefile文件里面,要学会如何Make命令,就必须学会如何编写Makefile文件。

2.1 概述

Makefile文件由一系列规则(rules)构成。每条规则的形式如下。

<target> : <prerequisites>

[tab] <commands>

上面第一行冒号前面的部分,叫做"目标"(target),冒号后面的部分叫做"前置条件"(prerequisites);第二行必须由一个tab键起首,后面跟着"命令"(commands)。

"目标"是必需的,不可省略;"前置条件"和"命令"都是可选的,但是两者之中必须至少存在一个。

每条规则就明确两件事:构建目标的前置条件是什么,以及如何构建。下面就详细讲解,每条规则的这三个组成部分。

2.2 目标(target)

一个目标(targ
acaf
et)就构成一条规则。目标通常是文件名,指明Make命令所要构建的对象,比如上文的 a.txt 。目标可以是一个文件名,也可以是多个文件名,之间用空格分隔。

除了文件名,目标还可以是某个操作的名字,这称为"伪目标"(phony target)。

clean:

rm *.o

上面代码的目标是clean,它不是文件名,而是一个操作的名字,属于"伪目标 ",作用是删除对象文件。

$ make clean

但是,如果当前目录中,正好有一个文件叫做clean,那么这个命令不会执行。因为Make发现clean文件已经存在,就认为没有必要重新构建了,就不会执行指定的rm命令。

为了避免这种情况,可以明确声明clean是"伪目标",写法如下。

.PHONY: clean

clean:

rm *.o temp

声明clean是"伪目标"之后,make就不会去检查是否存在一个叫做clean的文件,而是每次运行都执行对应的命令。像.PHONY这样的内置目标名还有不少,可以查看手册。

如果Make命令运行时没有指定目标,默认会执行Makefile文件的第一个目标。

$ make

上面代码执行Makefile文件的第一个目标。

三、用gdb调试

资料:使用 GDB 调试 Linux 软件,David SeagerCICS/390 开发部,IBM Hursley: http://www.ibm.com/developerworks/cn/linux/sdk/gdb/
资料:LINUX GDB调试实例: http://blog.csdn.net/wangjiannuaa/article/details/6584750
另见本博客《(第一章 1)通用双向链表》(系统程序员-成长计划)

下面一个例子说明如何用gdb查看 “缓冲区溢出程序”的运行时堆栈情形——

C代码 收藏代码

#include<stdio.h>

voidwhy_here(void){

printf("whyuhere?!\n");

_exit(0);

}

intmain(intargc,char*argv[]){

intbuff[1];

buff[2]=(int)why_here;

return0;

}

#gcc -g buf.c -o buf

启动gdb调试buf

在程序开始处设置断点(Sam:这里实际上只设置了一个断点,因为定义变量不会在指令序列中出现)

程序跑起来(直到遇到断点 )

查看main函数栈信息

如果遇到函数:

单步跳入是step

单步跳过是next

非常好的文档:
http://www.seas.upenn.edu/cets/answers/gcc.html http://baike.baidu.com/link?url=uU1zNRtDxA6rGdGQWqsjlM_0q8M_0iGbQD43Z9DbPr9e3dVFE4vSWcebSuwIWpis
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  linux g++ makefile gdb make