您的位置:首页 > 其它

oslo.messaging组件的学习之call方法

2016-03-29 00:00 295 查看

2014年4月25日 BY THUANQIN·0 COMMENT

这篇文章会介绍一下oslo.messaging组件的实现原理。相关的学习网站是: http://docs.openstack.org/developer/oslo.messaging/index.html http://docs.openstack.org/developer/nova/devref/rpc.html http://lynnkong.iteye.com/blog/1699299 https://wiki.openstack.org/wiki/Oslo/Messaging http://blog.csdn.net/gaoxingnengjisuan/article/details/11468061 另外可以看下这里,有对AMQP的一些学习。
1.简介
nova使用了direct,fanout,topic-based这三种exchange(好像也就这三种),而和其它组件(如Object Store)则是通过RestFUL API沟通。虽然现在的nova使用的RabbitMQ或QPID都是AMQP的,但以后可能会引入其它非AMQP的组件。
nova有两个rpc的方法:rpc.call和rpc.cast。都是基于AMQP实现的。rpc.call是同步的,会等待result返回。rpc.cast是异步的,并且不需要result。
nova还有一个notify的方法。
nova使用了kombu来做RabbitMQ消息的具体底层交互模块。关于kombu可以看这里。
由于支持多种MQ,所以这里的一个框架就是注册driver,具体调用的时候调用具体driver的特定方法。所以我们分析下rabbitmq这个方法就能知道其具体有哪些对象以及对象
2.RabbitMQ实现的基本对象
首先根据kombu的那个文章,我们知道kombu中有两个对象producer和consumer,前者向exchange发送message,后者从queue取出message。oslo这里的rabbitmq实现会的对这些东西做个封装(这一点很重要,记住oslo就是做了个封装,要看原理去看kombu的,否则还是不能很好的理解其实现)。
具体的对象直接的关系如下(不怎么会画UML。。。)

3.rpc的实现例子分析(call方法)
先来看看用法,我们拿nova-api这里的例子来说这个。下面的几行首先是初始化一个用于rpc的client,看下其实现:
[nova/network/rpcapi.py]

1

2

3

4

5

6

7

8
def

__init__(

self

,topic

=

None

):



super

(NetworkAPI,

self

).__init__()



topic

=

topic

or

CONF.network_topic



target

=

messaging.Target(topic

=

topic,version

=

'1.0'

)



version_cap

=

self

.VERSION_ALIASES.get(CONF.upgrade_levels.network,


   

CONF.upgrade_levels.network)



serializer

=

objects_base.NovaObjectSerializer()



self

.client

=

rpc.get_client(target,version_cap,serializer)


首先是获取一个topic,这个topic就是network的consumer监听的queue的binding-key,从这个图可以看到:

在这里,是这个东西:

1

2
# The topicnetwork nodes listen on (string value)


#network_topic=network


然后是获取一个target,我们看下这个target是啥,代码不长,我就都复制下来了:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78
class

Target(

object

):



"""Identifies the destination of messages.



A Target encapsulates all the information to identify where amessage



should be sent or what messages aserver is listening for.



Different subsets of the information encapsulated in aTarget object is



relevant to various aspects of the API:


  

creating aserver:



topicand server is required; exchange is optional


  

an endpoint's target:



namespace and version is optional


  

client sendingamessage:



topicis required,all other attributes optional



Its attributes are:



:param exchange:A scope for topics. Leave unspecified to default to the


  

control_exchange configuration option.



:type exchange:str



:param topic:A name which identifies the set of interfaces exposed by a


  

server. Multiple servers may listen on atopicand messages will be


  

dispatched to one of the servers in around-robin fashion.



:type topic:str



:param namespace:Identifies aparticular interface (i.e. set of methods)


  

exposed by aserver. The default interface has no namespace identifier


  

and is referred to as the null namespace.



:type namespace:str



:param version:Interfaces have amajor.minor version number associated


  

withthem. A minor number increment indicates abackwards compatible


  

change and an incompatible change is indicated by amajor number bump.


  

Servers may implement multiple major versions and clients may require


  

indicate that their message requires aparticular minimum minor version.



:type version:str



:param server:Clients can request that amessage be directed to aspecific


  

server,rather than just one of apool of servers listening on the topic.



:type server:str



:param fanout:Clients may request that amessage be directed to all


  

servers listening on atopicby setting fanout to ``True``,rather than


  

just one of them.



:type fanout:bool



"""



def

__init__(

self

,exchange

=

None

,topic

=

None

,namespace

=

None

,


 

version

=

None

,server

=

None

,fanout

=

None

):



self

.exchange

=

exchange



self

.topic

=

topic



self

.namespace

=

namespace



self

.version

=

version



self

.server

=

server



self

.fanout

=

fanout



def

__call__(

self

,

*

*

kwargs):



kwargs.setdefault(

'exchange'

,

self

.exchange)



kwargs.setdefault(

'topic'

,

self

.topic)



kwargs.setdefault(

'namespace'

,

self

.namespace)



kwargs.setdefault(

'version'

,

self

.version)



kwargs.setdefault(

'server'

,

self

.server)



kwargs.setdefault(

'fanout'

,

self

.fanout)



return

Target(

*

*

kwargs)



def

__eq__(

self

,other):



return

vars

(

self

)

=

=

vars

(other)



def

__ne__(

self

,other):



return

not

self

=

=

other



def

__repr__(

self

):



attrs

=

[]



for

a

in

[

'exchange'

,

'topic'

,

'namespace'

,


  

'version'

,

'server'

,

'fanout'

]:



v

=

getattr

(

self

,a)



if

v:



attrs.append((a,v))



values

=

','

.join([

'%s=%s'

%

i

for

i

in

attrs])



return

'<Target '

+

values

+

'>'


从注释可以看到,target有两种含义,对于发送者来说,其表示message应该发送到哪里。对于接受者来说,其表示应该接收何种消息。看下构造函数的几个方法:
exchange:用于指定exchange,如果没有指定,那么就是配置文件里的control_exchange
topic:就是binding key。如果多个consumer(在注释里也叫server)监听同一个queue,那么会使用round-robin来发配消息
namespace:某些方法会用到这个,默认是空,具体作用我们后面如果遇到了再看
version:consumer(也就是server)是由版本号的,发送的message的版本要和consumer的版本兼容才行。版本号是major.mirror的形式。major号相同则兼容
server:特定的consumer。相当于direct的转发了,就是发送者指定特定的consumer,然后由它处理,而不是像topic里的解释那样,用round-robin来分发消息
fanout:表明消息会广播,忽略topic,只要consumer允许接收fanout消息即可
在我们的例子里,exchange使用默认的exchange(从这里我们可以直达,其名字是nova)。topic就是network(配置文件里都会写清楚topic的名字是什么,看下那些XXX_topic的选项就可以了),version就是1.0。所以我们可以知道,现在或之后,broker上应该有一个叫做nova的exchange,并且有至少有一个queue绑定在上面,绑定的key是network。
我们继续看下面的代码,这一行就开始获取一个client了,并且由于知道了target,所以我们也知道这个client的信息会发往何处。

1
self

.client

=

rpc.get_client(target,version_cap,serializer)


1

2

3

4

5

6

7
def

get_client(target,version_cap

=

None

,serializer

=

None

):



assert

TRANSPORT

is

not

None



serializer

=

RequestContextSerializer(serializer)



return

messaging.RPCClient(TRANSPORT,


   

target,


   

version_cap

=

version_cap,


   

serializer

=

serializer)


TRANSPORT的信息可以看这里,serializer可以看这里,总之前者是发送消息的具体driver,后者是个用于格式化消息格式的东西。重点在于RPCClient,我们来看下这个。代码很长,所以我们慢慢看:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83
class

RPCClient(

object

):



"""A class for invoking methods on remote servers.



The RPCClient class is responsible for sendingmethod invocations to remote



servers viaamessaging transport.



A default targetis supplied to the RPCClient constructor,but target



attributes can be overridden for individual method invocations using the



prepare()method.



A method invocation consists of arequest contextdictionary,amethod name



and adictionary of arguments. A cast()invocation just sends the request



and returns immediately. A call()invocation waits for the server to send



areturn value.



This class is intended to be used by wrapping it in another class which



provides methods on the subclass to perform the remote invocation using



call()or cast()::



class TestClient(object):



def __init__(self,transport):



target= messaging.Target(topic='testtopic',version='2.0')



self._client = messaging.RPCClient(transport,target)



def test(self,ctxt,arg):



return self._client.call(ctxt,'test',arg=arg)



An example of using the prepare()method to override some attributes of the



default target::



def test(self,ctxt,arg):



cctxt = self._client.prepare(version='2.5')



return cctxt.call(ctxt,'test',arg=arg)



RPCClient have anumber of other properties - for example,timeoutand



version_cap- which may make sense to override for some method invocations,



so they too can be passed to prepare()::



def test(self,ctxt,arg):



cctxt = self._client.prepare(timeout=10)



return cctxt.call(ctxt,'test',arg=arg)



However,this class can be used directly without wrapping it another class.



For example::



transport = messaging.get_transport(cfg.CONF)



target= messaging.Target(topic='testtopic',version='2.0')



client = messaging.RPCClient(transport,target)



client.call(ctxt,'test',arg=arg)



but this is probably only useful in limited circumstances as awrapper



class will usually help to make the code much more obvious.



"""



def

__init__(

self

,transport,target,


 

timeout

=

None

,version_cap

=

None

,serializer

=

None

):



"""Construct an RPC client.



:param transport:amessaging transport handle



:type transport:Transport



:param target:the default targetfor invocations



:type target:Target



:param timeout:an optional default timeout(in seconds)for call()s



:type timeout:int or float



:param version_cap:raise aRPCVersionCapError version exceeds this cap



:type version_cap:str



:param serializer:an optional entity serializer



:type serializer:Serializer



"""



self

.conf

=

transport.conf



self

.conf.register_opts(_client_opts)



self

.transport

=

transport



self

.target

=

target



self

.timeout

=

timeout



self

.version_cap

=

version_cap



self

.serializer

=

serializer

or

msg_serializer.NoOpSerializer()



super

(RPCClient,

self

).__init__()



_marker

=

_CallContext._marker


小秦我最喜欢贴注释,所以这次还是老规矩,注释都贴上来了。注释写的很清楚,这个东西用来发消息,发到哪里呢?发到target。怎么个发法呢?通过rpc发。rpc是啥呢?这个就百度去啦。
构造函数没什么可讲的,就是赋值。所以我们继续看下面的代码,看下怎么调用rpc的call方法吧(再复习一下,call是同步的,需要等结果返回)。我们挑一个看看:

1

2

3
def

get_fixed_ip_by_address(

self

,ctxt,address):



return

self

.client.call(ctxt,

'get_fixed_ip_by_address'

,



address

=

address)


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35
def

call(

self

,ctxt,method,

*

*

kwargs):



"""Invoke amethod and wait for areply.



Method arguments must either be primitive types or types supported by



the client's serializer(if any). Similarly,the request contextmust



be adict unless the client's serializersupports serializing another



type.



The semantics of how any errors raised by the remote RPC endpoint



method are handled are quite subtle.



Firstly,if the remote exception is contained in one of the modules



listed in the allow_remote_exmods messaging.get_transport()parameter,



then it this exception will be re-raised by call(). However,such



locally re-raised remote exceptions are distinguishable from the same



exception type raised locally because re-raised remote exceptions are



modified such that their class name ends withthe '_Remote' suffix so



you may do::



if ex.__class__.__name__.endswith('_Remote'):



# Some special case for locally re-raised remote exceptions



Secondly,if aremote exception is not from amodule listed in the



allowed_remote_exmods list,then amessaging.RemoteError exception is



raised withall details of the remote exception.



:param ctxt:arequest contextdict



:type ctxt:dict



:param method:the method name



:type method:str



:param kwargs:adict of method arguments



:type kwargs:dict



:raises:MessagingTimeout,RemoteError



"""



return

self

.prepare().call(ctxt,method,

*

*

kwargs)


注释说了一大堆,主要是关于异常的。干的事情很简单啦,调用prepare生成的对象的call方法,参数中ctxt是restful请求的request的上下文(就把它看成是request好了),method是调用的远程对象要执行的方法,kwargs是传递个method的方法。我们看下prepare是啥:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33
def

prepare(

self

,exchange

=

_marker,topic

=

_marker,namespace

=

_marker,



version

=

_marker,server

=

_marker,fanout

=

_marker,



timeout

=

_marker,version_cap

=

_marker):



"""Prepare amethod invocation context.



Use this method to override client properties for an individual method



invocation. For example::



def test(self,ctxt,arg):



cctxt = self.prepare(version='2.5')



return cctxt.call(ctxt,'test',arg=arg)



:param exchange:see Target.exchange



:type exchange:str



:param topic:see Target.topic



:type topic:str



:param namespace:see Target.namespace



:type namespace:str



:param version:requirement the server must support,see Target.version



:type version:str



:param server:send to aspecific server,see Target.server



:type server:str



:param fanout:send to all servers on topic,see Target.fanout



:type fanout:bool



:param timeout:an optional default timeout(in seconds)for call()s



:type timeout:int or float



:param version_cap:raise aRPCVersionCapError version exceeds this cap



:type version_cap:str



"""



return

_CallContext._prepare(

self

,


 

exchange,topic,namespace,


 

version,server,fanout,


 

timeout,version_cap)


继续看_CallContext,从注释我们知道,prepare就是为了准备一个rpc的上下文:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
@classmethod


def

_prepare(

cls

,base,


 

exchange

=

_marker,topic

=

_marker,namespace

=

_marker,


 

version

=

_marker,server

=

_marker,fanout

=

_marker,


 

timeout

=

_marker,version_cap

=

_marker):



"""Prepare amethod invocation context. See RPCClient.prepare()."""



kwargs

=

dict

(



exchange

=

exchange,



topic

=

topic,



namespace

=

namespace,



version

=

version,



server

=

server,



fanout

=

fanout)



kwargs

=

dict

([(k,v)

for

k,v

in

kwargs.items()


   

if

v

is

not

cls

._marker])



target

=

base.target(

*

*

kwargs)



if

timeout

is

cls

._marker:



timeout

=

base.timeout



if

version_cap

is

cls

._marker:



version_cap

=

base.version_cap



return

_CallContext(base.transport,target,



base.serializer,



timeout,version_cap)


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
class

_CallContext(

object

):



_marker

=

object

()



def

__init__(

self

,transport,target,serializer,


 

timeout

=

None

,version_cap

=

None

):



self

.conf

=

transport.conf



self

.transport

=

transport



self

.target

=

target



self

.serializer

=

serializer



self

.timeout

=

timeout



self

.version_cap

=

version_cap



super

(_CallContext,

self

).__init__()


可以看到,这也不过是对一些对象在合并一下(所以说,context是个很简单的东西,就是一大堆杂七杂八的大集合)。
会过去看call吧,call会的最终调用这个上下文的call方法,也就是下面的:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
def

call(

self

,ctxt,method,

*

*

kwargs):



"""Invoke amethod and wait for areply. See RPCClient.call()."""



msg

=

self

._make_message(ctxt,method,kwargs)



msg_ctxt

=

self

.serializer.serialize_context(ctxt)



timeout

=

self

.timeout



if

self

.timeout

is

None

:



timeout

=

self

.conf.rpc_response_timeout



if

self

.version_cap:



self

._check_version_cap(msg.get(

'version'

))



try

:



result

=

self

.transport._send(

self

.target,msg_ctxt,msg,


  

wait_for_reply

=

True

,timeout

=

timeout)



except

driver_base.TransportDriverError as ex:



raise

ClientSendError(

self

.target,ex)



return

self

.serializer.deserialize_entity(ctxt,result)


ok了,我们快要接近call的核心了。一开始的两个主要是为了格式化一下消息的格式,然后附加点内容,不是重点。然后是有关于超时的,这个也可以不看。然后会检查一下version,这个也暂时不看。最后的这个就是我们的send了,这个我们要好好看看:

1

2

3

4

5
try

:



result

=

self

.transport._send(

self

.target,msg_ctxt,msg,


  

wait_for_reply

=

True

,timeout

=

timeout)


except

driver_base.TransportDriverError as ex:



raise

ClientSendError(

self

.target,ex)


transport上面提到过了,所以我们知道它里边的driver就是一个消息的具体实现。我们来看看其send方法:

1

2

3

4

5

6

7
def

_send(

self

,target,ctxt,message,wait_for_reply

=

None

,timeout

=

None

):



if

not

target.topic:



raise

exceptions.InvalidTarget(

'A topicis required to send'

,


   

target)



return

self

._driver.send(target,ctxt,message,


 

wait_for_reply

=

wait_for_reply,


 

timeout

=

timeout)


通过这里,我们很容易知道具体的_driver是什么:

1
<oslo.messaging._drivers.impl_qpid.QpidDriver object at 0x2e38a90>


不过小秦我我们假设用的是rabbitmq,我们来看下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
class

RabbitDriver(amqpdriver.AMQPDriverBase):



def

__init__(

self

,conf,url,default_exchange

=

None

,


 

allowed_remote_exmods

=

[]):



conf.register_opts(rabbit_opts)



conf.register_opts(rpc_amqp.amqp_opts)



connection_pool

=

rpc_amqp.get_connection_pool(conf,Connection)



super

(RabbitDriver,

self

).__init__(conf,url,


   

connection_pool,


   

default_exchange,


   

allowed_remote_exmods)



def

require_features(

self

,requeue

=

True

):



pass


也就是说,这里的send方法其实存在在amqpdriver.AMQPDriverBase中。后者是个很重要的方法,其是所有MQ client的一个父类,提供了公共的接口。我们来看下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
class

AMQPDriverBase(base.BaseDriver):



def

__init__(

self

,conf,url,connection_pool,


 

default_exchange

=

None

,allowed_remote_exmods

=

[]):



super

(AMQPDriverBase,

self

).__init__(conf,url,default_exchange,


 

allowed_remote_exmods)



self

._server_params

=

self

._server_params_from_url(

self

._url)



self

._default_exchange

=

default_exchange



# FIXME(markmc):temp hack



if

self

._default_exchange:



self

.conf.set_override(

'control_exchange'

,

self

._default_exchange)



self

._connection_pool

=

connection_pool



self

._reply_q_lock

=

threading.Lock()



self

._reply_q

=

None



self

._reply_q_conn

=

None



self

._waiter

=

None


这里的初始化现在没什么好看的,主要还是赋值。我们看下send吧:

1

2
def

send(

self

,target,ctxt,message,wait_for_reply

=

None

,timeout

=

None

):



return

self

._send(target,ctxt,message,wait_for_reply,timeout)


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
def

_send(

self

,target,ctxt,message,


  

wait_for_reply

=

None

,timeout

=

None

,


  

envelope

=

True

,notify

=

False

):



# FIXME(markmc):remove this temporary hack



class

Context(

object

):



def

__init__(

self

,d):



self

.d

=

d



def

to_dict(

self

):



return

self

.d



context

=

Context(ctxt)



msg

=

message



if

wait_for_reply:



msg_id

=

uuid.uuid4().

hex



msg.update({

'_msg_id'

:msg_id})



LOG.debug(

'MSG_ID is %s'

%

(msg_id))



msg.update({

'_reply_q'

:

self

._get_reply_q()})



rpc_amqp._add_unique_id(msg)



rpc_amqp.pack_context(msg,context)



if

envelope:



msg

=

rpc_common.serialize_msg(msg)



if

wait_for_reply:



self

._waiter.listen(msg_id)



try

:



with

self

._get_connection()as conn:



if

notify:



conn.notify_send(target.topic,msg)



elif

target.fanout:



conn.fanout_send(target.topic,msg)



else

:



topic

=

target.topic



if

target.server:



topic

=

'%s.%s'

%

(target.topic,target.server)



conn.topic_send(topic,msg,timeout

=

timeout)



if

wait_for_reply:



result

=

self

._waiter.wait(msg_id,timeout)



if

isinstance

(result,Exception):



raise

result



return

result



finally

:



if

wait_for_reply:



self

._waiter.unlisten(msg_id)


终于,小秦我终于看到真真切切的send了!看之前在明确一下,这里的send会发送一个消息给exchange,然后根据routing key,exchange会转发给具体的queue,在那个queue上有人在等着拿东西。那个人拿完并处理后会返回结果给我们,所以我们也必须建立一个接收返回消息的queue连接在exchange上,并且这个queue的routing key必须放在message里告知对方,让他们知道返回值往哪里发。具体的可以看这里。
懂了上面的这些后,就开始看代码吧:
首先设置msg_id,同时生成一个返回的queue(就是我们上面讲的那个接收返回消息的queue):

1

2

3

4

5
if

wait_for_reply:



msg_id

=

uuid.uuid4().

hex



msg.update({

'_msg_id'

:msg_id})



LOG.debug(

'MSG_ID is %s'

%

(msg_id))



msg.update({

'_reply_q'

:

self

._get_reply_q()})


来看看这个reply queue:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
def

_get_reply_q(

self

):



with

self

._reply_q_lock:



if

self

._reply_q

is

not

None

:



return

self

._reply_q



reply_q

=

'reply_'

+

uuid.uuid4().

hex



conn

=

self

._get_connection(pooled

=

False

)



self

._waiter

=

ReplyWaiter(

self

.conf,reply_q,conn,


   

self

._allowed_remote_exmods)



self

._reply_q

=

reply_q



self

._reply_q_conn

=

conn



return

self

._reply_q


可以看到queue的名字就是reply_加上一个随机的东东,并且根据上面的代码,可以知道这个名字铁定会放在msg里(msg.update({‘_reply_q’:self._get_reply_q()}))。看下这个waiter吧:

1

2

3

4

5

6

7

8

9

10

11

12

13

14
class

ReplyWaiter(

object

):



def

__init__(

self

,conf,reply_q,conn,allowed_remote_exmods):



self

.conf

=

conf



self

.conn

=

conn



self

.reply_q

=

reply_q



self

.allowed_remote_exmods

=

allowed_remote_exmods



self

.conn_lock

=

threading.Lock()



self

.incoming

=

[]



self

.msg_id_cache

=

rpc_amqp._MsgIdCache()



self

.waiters

=

ReplyWaiters()



conn.declare_direct_consumer(reply_q,

self

)


重点是最后一句,这里声明了一个consumer。我们知道从上面的对象图知道,有consumer就有它监听的queue,来看下这个是个什么consumer(具体的实现在impl_XXX中,小秦我这里是impl_rabbit):

1

2

3

4

5

6
def

declare_direct_consumer(

self

,topic,callback):



"""Create a'direct' queue.



In nova's use,this is generally amsg_idqueue used for



responses for call/multicall



"""



self

.declare_consumer(DirectConsumer,topic,callback)


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
def

declare_consumer(

self

,consumer_cls,topic,callback):



"""Create aConsumer using the class that was passed in and



add it to our list of consumers



"""



def

_connect_error(exc):



log_info

=

{

'topic'

:topic,

'err_str'

:

str

(exc)}



LOG.error(_(

"Failed to declare consumerfor topic'%(topic)s':"


  

"%(err_str)s"

)

%

log_info)



def

_declare_consumer():



consumer

=

consumer_cls(

self

.conf,

self

.channel,topic,callback,



six.

next

(

self

.consumer_num))



self

.consumers.append(consumer)



return

consumer



return

self

.ensure(_connect_error,_declare_consumer)


ok啦,我们看到,这里的reply queue就是一个DirectConsumer。这个DirectConsumer从上面的对象图中可以知道,就是对kombu的consumer一个封装(简单的说建立一个consumer就是建立一个queue,然后过会会在上面不停的监听罢了(不过这里我们还不会去监听))。
好啦,reply queue看好了,可以继续看_send方法了。现在我们知道的事情是:消息往exchang=nova的exchange发,并且topic=network。同时我建立了一个叫做reply_XXX的队列,用于接收返回值。继续看吧:

1

2
if

wait_for_reply:



self

._waiter.listen(msg_id)


这里就是监听队列了。msg_id就是监听的key。
接下来就是发送消息了:

1

2

3

4

5

6

7

8

9

10

11
try

:



with

self

._get_connection()as conn:



if

notify:



conn.notify_send(target.topic,msg)



elif

target.fanout:



conn.fanout_send(target.topic,msg)



else

:



topic

=

target.topic



if

target.server:



topic

=

'%s.%s'

%

(target.topic,target.server)



conn.topic_send(topic,msg,timeout

=

timeout)


在我们这里就是conn.topic_send(topic,msg,timeout=timeout)了。另外可以看到,如果target明确指定了server,那么就会发送给特定的server!否则则是通过round-robin算法来分配消息。至于conn.topic_send做的事情就很简单啦,创建个Publisher然后发送,具体的可以看看博客里的kombu的那个文章(也就是说,我发消息的时候是先建立接收队列再发送消息。如果是call的调用,会生成一个Topic Publisher和一个Direct Consumer,同时会生成一个msg_id为名字的exchange和一个msg_id为key的queue)。
最后几行就很简单了:

1

2

3

4

5

6

7

8

if

wait_for_reply:



result

=

self

._waiter.wait(msg_id,timeout)



if

isinstance

(result,Exception):



raise

result



return

result


finally

:



if

wait_for_reply:



self

._waiter.unlisten(msg_id)


如果需要等返回,那么我就等。如果返回的是异常,那么就抛出异常。最后别忘了取消监听就好。当然啦,如果压根就不要要等返回值的话,那么也就不用搞这么麻烦了。
最后,我们再来看看这里rpc的callback方法吧。我们知道我们调用了call后,就会在reply queue上监听,那么当消息到达后会如何处理呢?我们来看下:通过result= self._waiter.wait(msg_id,timeout),我们可以得到result,所以wait是我们的切入点:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51
def

wait(

self

,msg_id,timeout):



#



# NOTE(markmc):we're waiting for areply for msg_idto come in for on



# the reply_q,but there may be other threads also waiting for replies



# to other msg_ids



#



# Only one thread can be consuming from the queue using this connection



# and we don't want to hold open aconnection per thread,so instead we



# have the first thread take responsibility for passing replies not



# intended for itself to the appropriate thread.



#



final_reply

=

None



while

True

:



if

self

.conn_lock.acquire(

False

):



# Ok,we're the thread responsible for polling the connection



try

:



# Check the queue to see if aprevious lock-holding thread



# queued up areply already



while

True

:



reply,ending,empty 

=

self

._check_queue(msg_id)



if

empty:



break



if

not

ending:



final_reply

=

reply



else

:



return

final_reply



# Now actually poll the connection



while

True

:



reply,ending

=

self

._poll_connection(msg_id,timeout)



if

not

ending:



final_reply

=

reply



else

:



return

final_reply



finally

:



self

.conn_lock.release()



# We've got our reply,tell the other threads to wake up



# so that one of them will take over the responsibility for



# polling the connection



self

.waiters.wake_all(msg_id)



else

:



# We're going to wait for the first thread to pass us our reply



reply,ending,trylock 

=

self

._poll_queue(msg_id,timeout)



if

trylock:



# The first thread got its reply,let's try and take over



# the responsibility for polling



continue



if

not

ending:



final_reply

=

reply



else

:



return

final_reply


代码很长,很大一部分是由于在reply_q上可能有其它线程在等待不同的消息(原因应该是由于不希望每个线程都开一个connection,而是要开大家公用一个connection。这么说吧,如果我rpclient建立好了,这个时候弄了个多线程,那么会有多个reply_q,但根据我下面会说道的incoming列表,这些reply_q上的消息都会的放到同一个列表中,所以我们这里要做区分。这里的多线程应该是我们的协程,这个在之后的文章里会写到这个)。关键的代码是这句:

1
reply,ending

=

self

._poll_connection(msg_id,timeout)


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
def

_poll_connection(

self

,msg_id,timeout):



while

True

:



while

self

.incoming:



message_data

=

self

.incoming.pop(

0

)



incoming_msg_id

=

message_data.pop(

'_msg_id'

,

None

)



if

incoming_msg_id

=

=

msg_id:



return

self

._process_reply(message_data)



self

.waiters.put(incoming_msg_id,message_data)



try

:



self

.conn.consume(limit

=

1

,timeout

=

timeout)



except

rpc_common.Timeout:



raise

messaging.MessagingTimeout(

'Timed out waiting for a'


 

'reply to message ID %s'


 

%

msg_id)


实现很简单,如果拿到了消息,就看下是不是我们要的那个消息(更具msg_id),如果不是,则放回reply_q(其实这里已经不是reply_q了,具体的看了下面的incoming列表就知道了),如果是,则调用self._process_reply(message_data)进行处理。而后者其实很简单,看看返回的data里有没有错,没错就返回具体的返回值就好了:

1

2

3

4

5

6

7

8

9

10

11

12

13
def

_process_reply(

self

,data):



result

=

None



ending

=

False



self

.msg_id_cache.check_duplicate_message(data)



if

data[

'failure'

]:



failure

=

data[

'failure'

]



result

=

rpc_common.deserialize_remote_exception(



failure,

self

.allowed_remote_exmods)



elif

data.get(

'ending'

,

False

):



ending

=

True



else

:



result

=

data[

'result'

]



return

result,ending


那为什么返回的message会的到message_data里呢?通过之前关于kombu的文章里写的东西,我们知道当一个消息来了后consumer会的调用callback,那这个callback是什么呢?我们来看下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14
class

ReplyWaiter(

object

):



def

__init__(

self

,conf,reply_q,conn,allowed_remote_exmods):



self

.conf

=

conf



self

.conn

=

conn



self

.reply_q

=

reply_q



self

.allowed_remote_exmods

=

allowed_remote_exmods



self

.conn_lock

=

threading.Lock()



self

.incoming

=

[]



self

.msg_id_cache

=

rpc_amqp._MsgIdCache()



self

.waiters

=

ReplyWaiters()



conn.declare_direct_consumer(reply_q,

self

)


中的在这行代码:conn.declare_direct_consumer(reply_q,self),这里的self的__call__方法就是我们的callback,看下其实现吧:

1

2

3
def

__call__(

self

,message):



message.acknowledge()



self

.incoming.append(message)


现在清楚啦,当消息来了后其实什么都不做,只是把它放到incoming这个list里等着之后慢慢拿出来罢了。另外这里也会发送ack消息给broker。
4.小结一下rpc的call方法
大部分服务,如果其会的监听消息(也就是扮演rpc的接收端角色),那么一般都会提供一个rpcapi.py的文件,里边有一个XXXAPI的类(如ConsoleAuthAPI,NetworkAPI),这个类代表着一个RPCClient,并且初始化的时候会的把对应的topic赋值给它(ruconsole,network)。这个RPCClient有call和cast方法,调用这个RPCClient的call方法就会往对应的topic发送信息。其它服务如果要和某个服务rpc通信,那么只需要建立一个XXXAPI的对象即可。
当第一次使用call的时候,由于需要得到返回数据,因此会的建立一个reply_XXX的exchange,还会的建立一个reply_XXX的queue,其topic就是reply_XXX。注意,只有第一次调用call的时候会建立这些东西,此后再次调用call都不会建立了,而是复用这些exchange,queue,通过msg_id来区分接收到的消息是哪个线程发送的。
RPCClient最终是调用AMQPDriverBase中的_send方法去发送消息(RPCClient拥有TRANSPORT这个属性,后者拥有AMQPDriverBase这个属性,所以一个NetworkAPI含有一个AMQPDriverBase对象),具体的发送消息的动作由TRANSPORT中的_driver实现(比如RabbitMQ、QPID)。由于RPCClient只有一个(因为XXXAPI的类只有一个),所以reply_XXX这个queue就是AMQPDriverBase的一个属性。
AMQPDriverBase有一个属性是ReplyWaiter(含义是reply的等待者,这个等待者是针对RPCClient这个大的东西来说的,类似于manager),后者有一个属性是ReplyWaiters(也是reply的等待者,但这个等待的含义只的是等待的message,或者说一个ReplyWaiters就是一个调用了call方法并在等待reply的线程的集合)。
reply_XXX队列上的Consumer是DirectConsumer,其收到消息后会的把消息放在ReplyWaiter的incoming列表中,同时发送消息的ack确认。
接收消息这个动作是在call方法调用_send后,_send调用ReplyWaiter的wait来实现的。
wait的实现很简单,首先获取一个线程锁,确保某一个时候只有一个线程可以访问reply_XXX。
如果某个线程获取了这个锁:那么其会的查看ReplyWaiter的incoming列表,在里边取出消息,然后比较消息的msg_id是不是我这个线程需要的msg_id,如果不是,那么就把这个消息放到ReplyWaiters的一个字典中,这个字典的key是msg_id,value就是消息。如果取完了incoming中的消息发现都没有这个线程需要的,那么这个这个线程就会调用DirectConsumer的consume方法,参数是(limit=1,timeout=timeout),含义是等待最多timeout秒,并且只取一个消息。如果超时,那么就报错。如果取到了,那么和上面一样判断是不是自己需要的msg,是的话就去做处理,不是的话就放到ReplyWaiters的一个字典中,让别的没有取得线程锁的线程处理。
如果某个线程没有获取这个锁,那么其会的查看ReplyWaiters的字典,看看自己需要的消息是不是已经有人从incoming中取出来并放到这里了。如果是那么就处理,如果不是那么就等一会然后再去尝试获取锁,做类似的操作。
对于消息的处理其实很简单,如果有值那么就返回,如果有错那么就报错。
比如我现在有三个线程,都调用了call方法往network组件发送了一个消息,那么这三个线程都是共用一个NetworkAPI对象的(因为线程的建立在这个对象初始化之后才调用),这个NetworkAPI对象就是一个RPCClient,后者有TRANSPORT对象,知道消息发往的目的地是它的TARGET对象,同时TRANSPORT对象有AMQPDriverBase这个对象,后者有ReplyWaiter对象,ReplyWaiter有ReplyWaiters对象。
这三个线程都调用了call方法,只有第一个call方法会的创建一个reply_XXX exchange和一个topic是reply_XXX的queue,并且这三个线程(或者说这个RPCClient上后续所有的RPC调用)都会的使用这个reply_XXX exchange和reply_XXX queue。这三个线程发送的消息分别是msg_01,msg_02,msg_03(所以reply的消息id也应该是msg_01,msg_02,msg_03)。当他们发送完后,都会调用wait方法。由于只有一个线程可以取到锁,所以这三个线程中有两个线程会去ReplyWaiters的字典中看看那个取到锁的线程有没有把消息取来放到这个字典里。而那个取到锁的线程则是去看incoming列表,从中取消息。如果取到的是自己要的消息(比如msg_01),那么就释放锁并处理消息后返回消息中的返回值。如果不是自己需要的消息那么这个线程会把这个消息(比如msg_02,并不是它想要的msg_01)放到ReplyWaiters的字典中(添加一个条目:msg_01:MSG_DATA),继续从incoming中取消息。如果incoming中已经没有消息了,那么就调用reply_XXX上的consumer的consume方法,从reply_XXX中取消息放到incoming中,然后再去做相同的操作。

几个对象的关系(不是UML。。。瞎画的。。。):
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: