您的位置:首页 > 移动开发 > Android开发

Android binder机制驱动层学习

2016-02-29 17:13 651 查看

前言:

Read the fucking Source Code.

这段时间,大概花了两个星期(期间还偷懒了好几天),深入学习了一下Android的Binder驱动。话说上半年在看Mediaplay的源码时,就遇到过很多的IPC,当时也没有深入的去了解这块内容。这次为了对Android有一个系统级别的了解,所以较为深入的学习了一番。主要参考的内容包括:csdn的android 红人老罗,以及手里的一本杨丰盛的Android技术内幕(系统卷),作为主要的学习资料。当然我所小结的内容,也没有他们那么的详细,只是理清了整个思路而已。

注释:

SM:ServiceManager

MS:MediaPlayerService

xxx:指的是某种服务,入HelloService。

一.Binder驱动的整体架构

单从C++层宏观上看来,binder驱动的主要组成部分是:client(客户端),server(服务端),一个Service Manager和binder底层驱动。

整体的框图如下(摘自老罗的图):



其实从图中可以清晰的发现,在Android的应用层中Client和Server所谓的IPC,其实真正的工作均由底层的Binder驱动来完成。也就是说binder驱动可以完成进程间通信,这也是Android特点之一。Service Manager做为一个守护进程,主要来处理客户端的服务请求,管理所有的服务项。

 

二.binder底层驱动核心内容。

说到底,binder底层的驱动架构和通用的linux驱动没有区别,核心的内容包括binder_init,binder_open,binder_mmap,binder_ioctl.

binder驱动在Android系统中以miscdevice完成设备的注册,作为抽象设备,他没有直接操作硬件,只是完成了内存的拷贝处理。如果要深入理解这块机制,请参考老罗的android之旅。在这里对binder_ioctl做一定的分析:

2.1 驱动核心的操作数据结构:

binder_proc和binder_thread:

每open一个binder驱动(系统允许多个进程打开binder驱动),都会有一个专门的binder_proc管理当前进程的信息,包括进程的ID,当前进程由mmap所映射出的buffer信息,以及当前进程所允许的最大线程量。同时这个binder_proc会加入到系统的全局链表binder_procs中去,方便在不同进程之间可以查找信息。

binder_thread:在当前进程下存在多线程,因此binder驱动使用binder_thread来管理对应的线程信息,主要包括线程所属的binder_proc、当前状态looper以及一个transaction_stack(我的理解是负责着实际进程间通信交互的源头和目的地)。

binder_write_read :

[plain]

struct binder_write_read { 

    signed long write_size; /* bytes to write */ 

    signed long write_consumed; /* bytes consumed by driver */ 

    unsigned long   write_buffer; 

    signed long read_size;  /* bytes to read */ 

    signed long read_consumed;  /* bytes consumed by driver */ 

    unsigned long   read_buffer; 

}; 

在binder驱动中,以该结构体作为信息封装的中转(可以理解为内核和用户的连接)。在驱动中为根据write_size和read_size的大小来进行处理(见ioctl的解析部分),在write_buffer和read_buffer都代表着用户空间的buffer地址。在write_buffer中,由一个cmd和binder_transaction_data组成,cmd主要告知驱动当前所要处理的内容。

binder_transaction_data:

[plain]  

struct binder_transaction_data { 

    /* The first two are only used for bcTRANSACTION and brTRANSACTION, 

     * identifying the target and contents of the transaction. 

     */ 

    union { 

        size_t  handle; /* target descriptor of command transaction */ 

        void    *ptr;   /* target descriptor of return transaction */ 

    } target; 

    void        *cookie;    /* target object cookie */ 

    unsigned int    code;       /* transaction command */ 

 

    /* General information about the transaction. */ 

    unsigned int    flags; 

    pid_t       sender_pid; 

    uid_t       sender_euid; 

    size_t      data_size;  /* number of bytes of data */ 

    size_t      offsets_size;   /* number of bytes of offsets */ 

 

    /* If this transaction is inline, the data immediately 

     * follows here; otherwise, it ends with a pointer to 

     * the data buffer. 

     */ 

    union { 

        struct { 

            /* transaction data */ 

            const void  *buffer; 

            /* offsets from buffer to flat_binder_object structs */ 

            const void  *offsets; 

        } ptr; 

        uint8_t buf[8]; 

    } data; 

}; 

在这里,buffer和offsets分别代表传输内容的数据量以及Binder实体的偏移量(会遇到多个Binder实体)。

binder_transaction:该结构体主要C/S即请求进程和服务进程的相关信息,方便进程间通信,以及信息的调用

binder_work:理解为binder驱动中,进程所要处理的工作项。

binder_transactionbinder_transactionbinder_transactionbinder_transaction

2.2 binder驱动之ioctl解析:

和常用的ioctl相类似,在这里我们关注BINDER_WRITE_READ命令项的内容。

binder_thread_write和binder_thread_read会根据用户传入的write_size和read_size的有无来进行处理。在这里以Mediaplayservice和ServiceManager的通信来分析,调用的cmd如下:

MS首先传入cmd=BC_TRANSACTION:

调用binder_transaction:

[plain] 

static void binder_transaction(struct binder_proc *proc, 

                   struct binder_thread *thread, 

                   struct binder_transaction_data *tr, int reply) 



...else {//client请求service 

        if (tr->target.handle) {//SM时为target.handle=0 

            struct binder_ref *ref; 

            ref = binder_get_ref(proc, tr->target.handle); 

            if (ref == NULL) { 

                binder_user_error("binder: %d:%d got " 

                    "transaction to invalid handle\n", 

                    proc->pid, thread->pid); 

                return_error = BR_FAILED_REPLY; 

                goto err_invalid_target_handle; 

            } 

            target_node = ref->node; 

        } else { 

            target_node = binder_context_mgr_node;//调用的是SM守护进程节点 

            if (target_node == NULL) { 

                return_error = BR_DEAD_REPLY; 

                goto err_no_context_mgr_node; 

            } 

        } 

        e->to_node = target_node->debug_id; 

        target_proc = target_node->proc;//SM守护进程的相关信息 

        if (target_proc == NULL) { 

            return_error = BR_DEAD_REPLY; 

            goto err_dead_binder; 

        } 

        if (!(tr->flags & TF_ONE_WAY) && thread->transaction_stack) { 

            struct binder_transaction *tmp; 

            tmp = thread->transaction_stack; 

            if (tmp->to_thread != thread) { 

                binder_user_error("binder: %d:%d got new " 

                    "transaction with bad transaction stack" 

                    ", transaction %d has target %d:%d\n", 

                    proc->pid, thread->pid, tmp->debug_id, 

                    tmp->to_proc ? tmp->to_proc->pid : 0, 

                    tmp->to_thread ? 

                    tmp->to_thread->pid : 0); 

                return_error = BR_FAILED_REPLY; 

                goto err_bad_call_stack; 

            } 

            while (tmp) { 

                if (tmp->from && tmp->from->proc == target_proc) 

                    target_thread = tmp->from; 

                tmp = tmp->from_parent; 

            } 

        } 

    } 

    if (target_thread) { 

        e->to_thread = target_thread->pid; 

        target_list = &target_thread->todo; 

        target_wait = &target_thread->wait; 

    } else { 

        target_list = &target_proc->todo;//SM进程binder_proc的todo 

        target_wait = &target_proc->wait;//等待队列头,对应于SM 

    } 

    ... 

    if (!reply && !(tr->flags & TF_ONE_WAY)) 

        t->from = thread;//事务性记录from binder进程,即记录下请求进程 

    else 

        t->from = NULL; 

    t->sender_euid = proc->tsk->cred->euid; 

    t->to_proc = target_proc; 

    t->to_thread = target_thread;//目的服务进程 

    t->code = tr->code; 

    t->flags = tr->flags; 

    t->priority = task_nice(current); 

    t->buffer = binder_alloc_buf(target_proc, tr->data_size, 

        tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));//在SM上进程上开辟一个binder_buffer 

    if (t->buffer == NULL) { 

        return_error = BR_FAILED_REPLY; 

        goto err_binder_alloc_buf_failed; 

    } 

    t->buffer->allow_user_free = 0; 

    t->buffer->debug_id = t->debug_id; 

    t->buffer->transaction = t; 

    t->buffer->target_node = target_node; 

    if (target_node) 

        binder_inc_node(target_node, 1, 0, NULL);//增加目标节点的引用 

 

    offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *)));//内存中的偏移量 

 

    if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) { 

        binder_user_error("binder: %d:%d got transaction with invalid " 

            "data ptr\n", proc->pid, thread->pid); 

        return_error = BR_FAILED_REPLY; 

        goto err_copy_data_failed; 

    } 

    if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) { 

        binder_user_error("binder: %d:%d got transaction with invalid " 

            "offsets ptr\n", proc->pid, thread->pid); 

        return_error = BR_FAILED_REPLY; 

        goto err_copy_data_failed; 

    } 

    if (!IS_ALIGNED(tr->offsets_size, sizeof(size_t))) { 

        binder_user_error("binder: %d:%d got transaction with " 

            "invalid offsets size, %zd\n", 

            proc->pid, thread->pid, tr->offsets_size); 

        return_error = BR_FAILED_REPLY; 

        goto err_bad_offset; 

    } 

    off_end = (void *)offp + tr->offsets_size; 

    for (; offp < off_end; offp++) { 

        struct flat_binder_object *fp; 

        if (*offp > t->buffer->data_size - sizeof(*fp) || 

            t->buffer->data_size < sizeof(*fp) || 

            !IS_ALIGNED(*offp, sizeof(void *))) {       //对buffer大小做一定的检验 

            binder_user_error("binder: %d:%d got transaction with " 

                "invalid offset, %zd\n", 

                proc->pid, thread->pid, *offp); 

            return_error = BR_FAILED_REPLY; 

            goto err_bad_offset; 

        } 

        fp = (struct flat_binder_object *)(t->buffer->data + *offp);//获取一个binder实体 

        switch (fp->type) { 

        case BINDER_TYPE_BINDER://初次调用 

        case BINDER_TYPE_WEAK_BINDER: { 

            struct binder_ref *ref; 

            struct binder_node *node = binder_get_node(proc, fp->binder); 

            if (node == NULL) { 

                node = binder_new_node(proc, fp->binder, fp->cookie);//创建一个mediaservice节点 

                if (node == NULL) { 

                    return_error = BR_FAILED_REPLY; 

                    goto err_binder_new_node_failed; 

                } 

                node->min_priority = fp->flags & FLAT_BINDER_FLAG_PRIORITY_MASK; 

                node->accept_fds = !!(fp->flags & FLAT_BINDER_FLAG_ACCEPTS_FDS); 

            } 

            if (fp->cookie != node->cookie) { 

                binder_user_error("binder: %d:%d sending u%p " 

                    "node %d, cookie mismatch %p != %p\n", 

                    proc->pid, thread->pid, 

                    fp->binder, node->debug_id, 

                    fp->cookie, node->cookie); 

                goto err_binder_get_ref_for_node_failed; 

            } 

            ref = binder_get_ref_for_node(target_proc, node); 

            if (ref == NULL) { 

                return_error = BR_FAILED_REPLY; 

                goto err_binder_get_ref_for_node_failed; 

            } 

            if (fp->type == BINDER_TYPE_BINDER) 

                fp->type = BINDER_TYPE_HANDLE;//fp->type类型改为了BINDER_TYPE_HANDLE句柄 

            else 

                fp->type = BINDER_TYPE_WEAK_HANDLE; 

            fp->handle = ref->desc;// 

            binder_inc_ref(ref, fp->type == BINDER_TYPE_HANDLE, 

                       &thread->todo);//增加引用次数 

 

            binder_debug(BINDER_DEBUG_TRANSACTION, 

                     "        node %d u%p -> ref %d desc %d\n", 

                     node->debug_id, node->ptr, ref->debug_id, 

                     ref->desc); 

        } break; 

        case BINDER_TYPE_HANDLE: 

        case BINDER_TYPE_WEAK_HANDLE: { 

            struct binder_ref *ref = binder_get_ref(proc, fp->handle); 

            if (ref == NULL) { 

                binder_user_error("binder: %d:%d got " 

                    "transaction with invalid " 

                    "handle, %ld\n", proc->pid, 

                    thread->pid, fp->handle); 

                return_error = BR_FAILED_REPLY; 

                goto err_binder_get_ref_failed; 

            } 

            if (ref->node->proc == target_proc) { 

                if (fp->type == BINDER_TYPE_HANDLE) 

                    fp->type = BINDER_TYPE_BINDER; 

                else 

                    fp->type = BINDER_TYPE_WEAK_BINDER; 

                fp->binder = ref->node->ptr; 

                fp->cookie = ref->node->cookie; 

                binder_inc_node(ref->node, fp->type == BINDER_TYPE_BINDER, 0, NULL); 

                binder_debug(BINDER_DEBUG_TRANSACTION, 

                         "        ref %d desc %d -> node %d u%p\n", 

                         ref->debug_id, ref->desc, ref->node->debug_id, 

                         ref->node->ptr); 

            } else { 

                struct binder_ref *new_ref; 

                new_ref = binder_get_ref_for_node(target_proc, ref->node); 

                if (new_ref == NULL) { 

                    return_error = BR_FAILED_REPLY; 

                    goto err_binder_get_ref_for_node_failed; 

                } 

                fp->handle = new_ref->desc; 

                binder_inc_ref(new_ref, fp->type == BINDER_TYPE_HANDLE, NULL); 

                binder_debug(BINDER_DEBUG_TRANSACTION, 

                         "        ref %d desc %d -> ref %d desc %d (node %d)\n", 

                         ref->debug_id, ref->desc, new_ref->debug_id, 

                         new_ref->desc, ref->node->debug_id); 

            } 

        } break; 

        default: 

            binder_user_error("binder: %d:%d got transactio" 

                "n with invalid object type, %lx\n", 

                proc->pid, thread->pid, fp->type); 

            return_error = BR_FAILED_REPLY; 

            goto err_bad_object_type; 

        } 

    } 

    if (reply) { 

        BUG_ON(t->buffer->async_transaction != 0); 

        binder_pop_transaction(target_thread, in_reply_to); 

    } else if (!(t->flags & TF_ONE_WAY)) { 

        BUG_ON(t->buffer->async_transaction != 0); 

        t->need_reply = 1; 

        t->from_parent = thread->transaction_stack;  

        thread->transaction_stack = t; 

    } else { 

        BUG_ON(target_node == NULL); 

        BUG_ON(t->buffer->async_transaction != 1); 

        if (target_node->has_async_transaction) { 

            target_list = &target_node->async_todo; 

            target_wait = NULL; 

        } else 

            target_node->has_async_transaction = 1; 

    } 

    t->work.type = BINDER_WORK_TRANSACTION; 

    list_add_tail(&t->work.entry, target_list);//binder_work添加到SM进程Proc链表中 

    tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;//type设置为BINDER_WORK_TRANSACTION_COMPLETE 

    list_add_tail(&tcomplete->entry, &thread->todo);//待完成的工作加入的本线程的todo链表中 

    if (target_wait) 

        wake_up_interruptible(target_wait);//唤醒Service Manager进程 

    return; 

 

...} 

分析这个函数,可以知道和SM通信时,获取target_proc为SM进程的相关信息。然后是维护当前请求的binder实体,以免被crash。以binder_transaction t为C/S之间做为传递的信息,做初始化记录请求进程和服务进程到t中。最后做如下操作:

 t->work.type = BINDER_WORK_TRANSACTION;

 list_add_tail(&t->work.entry, target_list);//binder_work添加到SM进程Proc链表中

 tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;//type设置为BINDER_WORK_TRANSACTION_COMPLETE

 list_add_tail(&tcomplete->entry, &thread->todo);//待完成的工作加入的本线程的todo链表中

 if (target_wait)

  wake_up_interruptible(target_wait);//唤醒Service Manager进程

可以看到,将这个t加入到了服务进程SM的链表中,将待完成的tcomplete加入到当前MS的thread中,最后唤醒SM,做相关的处理。

MS继续执行binder_thread_read如下:

[plain] 

static int binder_thread_read(struct binder_proc *proc, 

                  struct binder_thread *thread, 

                  void  __user *buffer, int size, 

                  signed long *consumed, int non_block) 



    void __user *ptr = buffer + *consumed; 

    void __user *end = buffer + size; 

 

    int ret = 0; 

    int wait_for_proc_work; 

 

    if (*consumed == 0) { 

        if (put_user(BR_NOOP, (uint32_t __user *)ptr))//添加BR_NOOP 

            return -EFAULT; 

        ptr += sizeof(uint32_t); 

    } 

 

retry: 

    wait_for_proc_work = thread->transaction_stack == NULL && 

                list_empty(&thread->todo);// false 

 

    if (thread->return_error != BR_OK && ptr < end) { 

        if (thread->return_error2 != BR_OK) { 

            if (put_user(thread->return_error2, (uint32_t __user *)ptr)) 

                return -EFAULT; 

            ptr += sizeof(uint32_t); 

            if (ptr == end) 

                goto done; 

            thread->return_error2 = BR_OK; 

        } 

        if (put_user(thread->return_error, (uint32_t __user *)ptr)) 

            return -EFAULT; 

        ptr += sizeof(uint32_t); 

        thread->return_error = BR_OK; 

        goto done; 

    } 

 

 

    thread->looper |= BINDER_LOOPER_STATE_WAITING; 

    if (wait_for_proc_work) 

        proc->ready_threads++; 

    mutex_unlock(&binder_lock); 

    if (wait_for_proc_work) { 

        if (!(thread->looper & (BINDER_LOOPER_STATE_REGISTERED | 

                    BINDER_LOOPER_STATE_ENTERED))) { 

            binder_user_error("binder: %d:%d ERROR: Thread waiting " 

                "for process work before calling BC_REGISTER_" 

                "LOOPER or BC_ENTER_LOOPER (state %x)\n", 

                proc->pid, thread->pid, thread->looper); 

            wait_event_interruptible(binder_user_error_wait, 

                         binder_stop_on_user_error < 2); 

        } 

        binder_set_nice(proc->default_priority); 

        if (non_block) { 

            if (!binder_has_proc_work(proc, thread)) 

                ret = -EAGAIN; 

        } else 

            ret = wait_event_interruptible_exclusive(proc->wait, binder_has_proc_work(proc, thread));//binder_has_proc_work为false唤醒 

    } else { 

        if (non_block) { 

            if (!binder_has_thread_work(thread)) 

                ret = -EAGAIN; 

        } else 

            ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread)); 

    } 

    mutex_lock(&binder_lock); 

    if (wait_for_proc_work) 

        proc->ready_threads--; 

    thread->looper &= ~BINDER_LOOPER_STATE_WAITING; 

 

    if (ret) 

        return ret; 

 

    while (1) { 

        uint32_t cmd; 

        struct binder_transaction_data tr; 

        struct binder_work *w; 

        struct binder_transaction *t = NULL; 

 

        if (!list_empty(&thread->todo)) 

            w = list_first_entry(&thread->todo, struct binder_work, entry); 

        else if (!list_empty(&proc->todo) && wait_for_proc_work)//在SM被唤醒时proc->todo为1且wait_for_proc_work等待进程有事情做 

            w = list_first_entry(&proc->todo, struct binder_work, entry);//获取binder_work 

        else { 

            if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */ 

                goto retry; 

            break; 

        } 

 

        if (end - ptr < sizeof(tr) + 4) 

            break; 

 

        switch (w->type) { 

        case BINDER_WORK_TRANSACTION: {//SM唤醒时带调用 

            t = container_of(w, struct binder_transaction, work);//通过binder_transaction的指针变量work为w,获取binder_transaction 

        } break; 

        case BINDER_WORK_TRANSACTION_COMPLETE: {  

            cmd = BR_TRANSACTION_COMPLETE; 

            if (put_user(cmd, (uint32_t __user *)ptr))  //BR_TRANSACTION_COMPLETE命令写回 

                return -EFAULT; 

            ptr += sizeof(uint32_t); 

 

            binder_stat_br(proc, thread, cmd); 

            binder_debug(BINDER_DEBUG_TRANSACTION_COMPLETE, 

                     "binder: %d:%d BR_TRANSACTION_COMPLETE\n", 

                     proc->pid, thread->pid); 

 

            list_del(&w->entry);//从thread->todo删除链表 

            kfree(w); 

            binder_stats_deleted(BINDER_STAT_TRANSACTION_COMPLETE); 

        } break; 

写会BR_NOOP和BR_TRANSACTION_COMPLETE给用户空间,相当于从内核读取了数据,同时也做list_del(&w->entry)的处理。

MS继续与binder交互,进入ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));进入睡眠等待SM的唤醒。

 

SM在被MS唤醒后所做的处理如下:

SM同样在binder_thread_read时处于ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));的睡眠当中,但是此时proc->todo已经有内容,在前面的MS write的过程进行了(list_add_tail(&t->work.entry, target_list);//binder_work添加到SM进程Proc链表中)操作,所以会执行:

 w = list_first_entry(&proc->todo, struct binder_work, entry);//获取binder_work

 t = container_of(w, struct binder_transaction, work);//通过binder_transaction的指针变量work为w,获取binder_transaction

最后获取binder_transaction t 用于SM和MS用来交互和中转信息。

有了从MS传递过来的t,将t的相关信息读取回SM的用户空间,传递给SM的命令为cmd=BR_TRANSACTION。

MS再次传递cmd=BC_REPLY,再次回到binder_thread_write

[plain]

{  //reply=1,sevice回复给client 

        in_reply_to = thread->transaction_stack;//获取当前事务性即原来MS传递给SM的binder_transaction变量t 

        if (in_reply_to == NULL) { 

            binder_user_error("binder: %d:%d got reply transaction " 

                      "with no transaction stack\n", 

                      proc->pid, thread->pid); 

            return_error = BR_FAILED_REPLY; 

            goto err_empty_call_stack; 

        } 

        binder_set_nice(in_reply_to->saved_priority); 

        if (in_reply_to->to_thread != thread) { 

            binder_user_error("binder: %d:%d got reply transaction " 

                "with bad transaction stack," 

                " transaction %d has target %d:%d\n", 

                proc->pid, thread->pid, in_reply_to->debug_id, 

                in_reply_to->to_proc ? 

                in_reply_to->to_proc->pid : 0, 

                in_reply_to->to_thread ? 

                in_reply_to->to_thread->pid : 0); 

            return_error = BR_FAILED_REPLY; 

            in_reply_to = NULL; 

            goto err_bad_call_stack; 

        } 

        thread->transaction_stack = in_reply_to->to_parent; 

        target_thread = in_reply_to->from;//获取请求的线程 

        if (target_thread == NULL) { 

            return_error = BR_DEAD_REPLY; 

            goto err_dead_binder; 

        } 

        if (target_thread->transaction_stack != in_reply_to) { 

            binder_user_error("binder: %d:%d got reply transaction " 

                "with bad target transaction stack %d, " 

                "expected %d\n", 

                proc->pid, thread->pid, 

                target_thread->transaction_stack ? 

                target_thread->transaction_stack->debug_id : 0, 

                in_reply_to->debug_id); 

            return_error = BR_FAILED_REPLY; 

            in_reply_to = NULL; 

            target_thread = NULL; 

            goto err_dead_binder; 

        } 

        target_proc = target_thread->proc;//请教进程的相关信息 

    } 

前期MS在执行时,将MS自己的thread信息记录在了t当中。

[plain]

if (!reply && !(tr->flags & TF_ONE_WAY)) 

    t->from = thread;//事务性记录from binder进程,即记录下请求进程 

因此SM在执行binder_thread_write时,会获取到请求进程的thread,最终和前面MS唤醒SM一样,唤醒SM,只是现在的目标进程target_proc换成了MS的内容。

最终SM回互用户空间BR_TRANSACTION_COMPLETE,SM随后再次进行LOOP循环,睡眠等待其他请求进程的唤醒。

MS被唤醒后,所做的处理和SM被唤醒时相类似,在这里写会的cmd=BR_REPLY,以此完成了一次SM和MS的IPC.

 

2.3 binder 驱动C++层的机制简单介绍

可以简单的理解Binder IPC 实际就是C/S通过Linux的机制,对各自线程的信息进行维护,使SM和MS的用户空间不断和内核空间以ioctl进行读写的交互。服务端对信息进行解析完成相应的操作。客户度实际只需发送命令即可。作为应用程序的开发,Android很好的为我们做了各种封装,包括C++层次的binder和Java层次的binder驱动。

核心类:BpBinder(远程BinderProxy),BBinder(Native 本地Binder)

基于Binder C++层的机制,以SM和MS为例,在MS如果要和SM通信,就需要获得SM在MS进程中的一个Proxy,这里称之为BpServiceManager,BpServiceManager的操作函数分为addservice和getservice,需要的参量为一个Bpbinder(在这里就是SM远程的binder对象,相当于一个句柄,由于其特殊性,句柄数值为0)。

在2.2中分析的binder底层部分内容,就是基于用户空间的addservice开始的。在这里引用罗老师的UML图,方便自己的理解。



在这里只对BpServiceManager的addservice做解析,该类最终的实现其实还是调用BpBinder的transact来完成,而该函数的实现最终调用的是IPCThreadState的transact,在该transact代码如下:

[plain]

status_t IPCThreadState::transact(int32_t handle, 

                                  uint32_t code, const Parcel& data, 

                                  Parcel* reply, uint32_t flags)  //handle=0,flags=0 



    status_t err = data.errorCheck(); 

 

    flags |= TF_ACCEPT_FDS; 

 

    IF_LOG_TRANSACTIONS() { 

        TextOutput::Bundle _b(alog); 

        alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand " 

            << handle << " / code " << TypeCode(code) << ": " 

            << indent << data << dedent << endl; 

    } 

     

    if (err == NO_ERROR) { 

        LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(), 

            (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY"); 

        err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);//将要发送的数据整理成一个binder_transaction_data 

    } 

     

    if (err != NO_ERROR) { 

        if (reply) reply->setError(err); 

        return (mLastError = err); 

    } 

     

    if ((flags & TF_ONE_WAY) == 0) { 

        #if 0 

        if (code == 4) { // relayout 

            LOGI(">>>>>> CALLING transaction 4"); 

        } else { 

            LOGI(">>>>>> CALLING transaction %d", code); 

        } 

        #endif 

        if (reply) { 

            err = waitForResponse(reply); 

        } else { 

            Parcel fakeReply; 

            err = waitForResponse(&fakeReply); 

        } 

        #if 0 

        if (code == 4) { // relayout 

            LOGI("<<<<<< RETURNING transaction 4"); 

        } else { 

            LOGI("<<<<<< RETURNING transaction %d", code); 

        } 

        #endif 

         

        IF_LOG_TRANSACTIONS() { 

            TextOutput::Bundle _b(alog); 

            alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand " 

                << handle << ": "; 

            if (reply) alog << indent << *reply << dedent << endl; 

            else alog << "(none requested)" << endl; 

        } 

    } else { 

        err = waitForResponse(NULL, NULL); 

    } 

     

    return err; 



在这里真正实现ioctl的内容在waitForResponse的talkWithDriver中实现。

SM作为Android系统中特殊的一部分,他即可用当做服务端,也管理着系统的所有Service。新的服务需要向他完成注册才可以正常的使用。因此在这里的addservice就是在远程通过Binder驱动和SM交互,完成了MS的注册,注册传入的是一个BBinder的实体BnMediaPlayService,name=MediaPlay。

在C++的binder机制中,Bpxxx对应的Bnxxx(Bpxxx继承自BpBinder,Bnxxx继承自BBinder),简单理解就是Bnxxx在向SM完成注册后,会自动启动一个线程来等待客户端的请求,而在客户端如果要请求服务,需要获取一个Bpxxx远程代理来完成。Bpxxx在getservice时还回xxx服务的binder句柄,存放在Bpxxx对应的BpBinder的mHandle中。在binder驱动的底层会根据这个mHandle,查找到对应的target服务进程,同理根据2.2中MS唤醒SM的过程,进行命令的处理。

因此总结出在客户端需要服务时,首先获得Bpxxx(new BpBinder(mHandle))。然后是最终调用BpBinder的remote()->transact。而在用户端以BBinder->ontransact完成命令的解析。

 

2.4 Binder驱动的Java机制

简单的说一下Java层的binder驱动,其实这部分的难点还是在于Java 中Native函数在JNI的转换,感谢Google的开发人员,实现了Java和C++层的Binder函数的转换。

简单的总结3个小点:

1.Java层拥有一个SM的远程接口SMProxy,句柄为0 的BinderProxy对象,BinderProxy相当于BpBinder,在JNI实现转换。

2,Ixxx接口定义一个stub和proxy,Stub(存根):理解为本地服务。proxy:远程的代理。与C++相对应的前者就是Bnxxx,后者就是Bpxxx。www.2cto.com

3. xxx需要继承了Ixxx的Stub,才可以完成请求的处理。

 

2.5 总结

上面的内容,基本是自己的阅读和学习的感受,Binder驱动的复杂程度是难以想象的,源码量大。写完本文也没有全部读通,但是这也为深入的去了解整个android系统开辟了基础。其中有些内容都是参考罗老师的Android之旅来完成的,在这里表示感谢。在接下去的一端时间将在Android4.0.3
ICS上学习Android系统整个系统过程,主要关心的是3个开机画面,继续给力,最近身体不是很舒服,对着电脑头老是晕,效率下降了很多,但是依旧在继续努力,给自己加油。

 

 作者:gzzaigcn

 

 
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息