您的位置:首页 > 运维架构 > Linux

Linux驱动修炼之道-SPI驱动框架源码分析(下)

2015-12-07 16:32 736 查看
来自:http://blog.csdn.net/woshixingaaa/article/details/6574224

这篇文档主要介绍spi数据传输过程。

当应用层要向设备传输数据的时候,会通过ioctl向设备驱动发送传输数据的命令。如图,向SPI从设备发送读写命令,实际的读写操作还是调用了主机控制器驱动的数据传输函数。transfer函数用于spi的IO传输。但是,transfer函数一般不会执行真正的传输操作,而是把要传输的内容放到一个队列里,然后调用一种类似底半部的机制进行真正的传输。这是因为,spi总线一般会连多个spi设备,而spi设备间的访问可能会并发。如果直接在transfer函数中实现传输,那么会产生竞态,spi设备互相间会干扰。所以,真正的spi传输与具体的spi控制器的实现有关,spi的框架代码中没有涉及。像spi设备的片选,根据具体设备进行时钟调整等等都在实现传输的代码中被调用。spi的传输命令都是通过结构spi_message定义,设备程序调用transfer函数将spi_message交给spi总线驱动,总线驱动再将message传到底半部排队,实现串行化传输。



在spidev.c中实现了file_operations:

view
plain

<span style="font-size:18px;">static struct file_operations spidev_fops = {

.owner = THIS_MODULE,

.write = spidev_write,

.read = spidev_read,

.unlocked_ioctl = spidev_ioctl,

.open = spidev_open,

.release = spidev_release,

};</span>

这里看spidev_ioctl的实现:

view
plain

<span style="font-size:18px;">static long

spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)

{

int err = 0;

int retval = 0;

struct spidev_data *spidev;

struct spi_device *spi;

u32 tmp;

unsigned n_ioc;

struct spi_ioc_transfer *ioc;

/*查看这个命令的幻数字段是否为'k'*/

if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)

return -ENOTTY;

/*如果方向是用户空间从内核读,即内核向用户空间写,则检查用户空间的地址是否有效*/

if (_IOC_DIR(cmd) & _IOC_READ)

err = !access_ok(VERIFY_WRITE,

(void __user *)arg, _IOC_SIZE(cmd));

/*如果方向是用户空间向内核写,即内核读用户空间,则检查用户空间的地址是否有效*/

if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)

err = !access_ok(VERIFY_READ,

(void __user *)arg, _IOC_SIZE(cmd));

if (err)

return -EFAULT;

/* guard against device removal before, or while,

* we issue this ioctl.

*/

spidev = filp->private_data;

spin_lock_irq(&spidev->spi_lock);

spi = spi_dev_get(spidev->spi);

spin_unlock_irq(&spidev->spi_lock);

if (spi == NULL)

return -ESHUTDOWN;

mutex_lock(&spidev->buf_lock);

switch (cmd) {

/* read requests */

case SPI_IOC_RD_MODE:

/*因为已经进行了地址是否有效的检查,所以这里使用__put_user,__get_user,__copy_from_user可以节省几个时钟周期呢*/

retval = __put_user(spi->mode & SPI_MODE_MASK,

(__u8 __user *)arg);

break;

case SPI_IOC_RD_LSB_FIRST:

retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,

(__u8 __user *)arg);

break;

case SPI_IOC_RD_BITS_PER_WORD:

retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);

break;

case SPI_IOC_RD_MAX_SPEED_HZ:

retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);

break;

/*设置SPI模式*/

case SPI_IOC_WR_MODE:

retval = __get_user(tmp, (u8 __user *)arg);

if (retval == 0) {

/*先将之前的模式保存起来,一旦设置失败进行回复*/

u8 save = spi->mode;

if (tmp & ~SPI_MODE_MASK) {

retval = -EINVAL;

break;

}

tmp |= spi->mode & ~SPI_MODE_MASK;

spi->mode = (u8)tmp;

retval = spi_setup(spi);

if (retval < 0)

spi->mode = save;

else

dev_dbg(&spi->dev, "spi mode %02x\n", tmp);

}

break;

case SPI_IOC_WR_LSB_FIRST:

retval = __get_user(tmp, (__u8 __user *)arg);

if (retval == 0) {

u8 save = spi->mode;

if (tmp)

spi->mode |= SPI_LSB_FIRST;

else

spi->mode &= ~SPI_LSB_FIRST;

retval = spi_setup(spi);

if (retval < 0)

spi->mode = save;

else

dev_dbg(&spi->dev, "%csb first\n",

tmp ? 'l' : 'm');

}

break;

case SPI_IOC_WR_BITS_PER_WORD:

retval = __get_user(tmp, (__u8 __user *)arg);

if (retval == 0) {

u8 save = spi->bits_per_word;

spi->bits_per_word = tmp;

retval = spi_setup(spi);

if (retval < 0)

spi->bits_per_word = save;

else

dev_dbg(&spi->dev, "%d bits per word\n", tmp);

}

break;

case SPI_IOC_WR_MAX_SPEED_HZ:

retval = __get_user(tmp, (__u32 __user *)arg);

if (retval == 0) {

u32 save = spi->max_speed_hz;

spi->max_speed_hz = tmp;

retval = spi_setup(spi);

if (retval < 0)

spi->max_speed_hz = save;

else

dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);

}

break;

default:

/* segmented and/or full-duplex I/O request */

if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))

|| _IOC_DIR(cmd) != _IOC_WRITE) {

retval = -ENOTTY;

break;

}

/*得到用户空间数据的大小*/

tmp = _IOC_SIZE(cmd);

/*如果这些数据不能分成spi_ioc_transfer的整数倍,则不能进行传输,spi_io_transfer是对spi_transfer的映射*/

if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {

retval = -EINVAL;

break;

}

/*计算出能分多少个spi_ioc_transfer*/

n_ioc = tmp / sizeof(struct spi_ioc_transfer);

if (n_ioc == 0)

break;

/*在内核中分配装载这些数据的内存空间*/

ioc = kmalloc(tmp, GFP_KERNEL);

if (!ioc) {

retval = -ENOMEM;

break;

}

/*把用户空间的数据拷贝过来*/

if (__copy_from_user(ioc, (void __user *)arg, tmp)) {

kfree(ioc);

retval = -EFAULT;

break;

}

/*进行数据传输*/

<span style="color:#ff0000;">retval = spidev_message(spidev, ioc, n_ioc);</span>

kfree(ioc);

break;

}

mutex_unlock(&spidev->buf_lock);

spi_dev_put(spi);

return retval;

}

</span>

下面跟踪spidev_message看看:

view
plain

<span style="font-size:18px;">static int spidev_message(struct spidev_data *spidev,

struct spi_ioc_transfer *u_xfers, unsigned n_xfers)

{

struct spi_message msg;

struct spi_transfer *k_xfers;

struct spi_transfer *k_tmp;

struct spi_ioc_transfer *u_tmp;

unsigned n, total;

u8 *buf;

int status = -EFAULT;

/*初始化spi_message的tranfers链表头*/

spi_message_init(&msg);

/*分配n个spi_transfer的内存空间,一个spi_message由多个数据段spi_message组成*/

k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);

if (k_xfers == NULL)

return -ENOMEM;

buf = spidev->buffer;

total = 0;

/*这个for循环的主要任务是将所有的spi_transfer组装成一个spi_message*/

for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;

n;

n--, k_tmp++, u_tmp++) {

/*u_tmp是从用户空间传下来的spi_ioc_message的大小,spi_ioc_message是对spi_message的映射*/

k_tmp->len = u_tmp->len;

/*统计要传输数据的总量*/

total += k_tmp->len;

if (total > bufsiz) {

status = -EMSGSIZE;

goto done;

}

/*spi_transfer是一个读写的buffer对,如果是要接收则把buffer给接收的rx_buf*/

if (u_tmp->rx_buf) {

k_tmp->rx_buf = buf;

if (!access_ok(VERIFY_WRITE, (u8 __user *)

(uintptr_t) u_tmp->rx_buf,

u_tmp->len))

goto done;

}

/*如果要传输,这个buffer给tx_buf使用,从用户空间拷过来要传输的数据*/

if (u_tmp->tx_buf) {

k_tmp->tx_buf = buf;

if (copy_from_user(buf, (const u8 __user *)

(uintptr_t) u_tmp->tx_buf,

u_tmp->len))

goto done;

}

/*指向下一段内存*/

buf += k_tmp->len;

/*最后一个transfer传输完毕是否会影响片选*/

k_tmp->cs_change = !!u_tmp->cs_change;

/*每字长的字节数*/

k_tmp->bits_per_word = u_tmp->bits_per_word;

/*一段数据传输完需要一定的时间等待*/

k_tmp->delay_usecs = u_tmp->delay_usecs;

/*初始化传输速度*/

k_tmp->speed_hz = u_tmp->speed_hz;

/*将spi_transfer通过它的transfer_list字段挂到spi_message的transfer队列上*/

spi_message_add_tail(k_tmp, &msg);

}

/*调用底层的传输函数*/

<span style="color:#ff0000;">status = spidev_sync(spidev, &msg);</span>

if (status < 0)

goto done;

/* copy any rx data out of bounce buffer */

buf = spidev->buffer;

/*把传输数据拷贝到用户空间打印出来,可以查看是否传输成功*/

for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {

if (u_tmp->rx_buf) {

if (__copy_to_user((u8 __user *)

(uintptr_t) u_tmp->rx_buf, buf,

u_tmp->len)) {

status = -EFAULT;

goto done;

}

}

buf += u_tmp->len;

}

status = total;

done:

kfree(k_xfers);

return status;

}

</span>

看spidev_sync的实现:

view
plain

<span style="font-size:18px;">static ssize_t

spidev_sync(struct spidev_data *spidev, struct spi_message *message)

{

/*声明并初始化一个完成量*/

DECLARE_COMPLETION_ONSTACK(done);

int status;

/*指定spi_message使用的唤醒完成量函数*/

message->complete = spidev_complete;

message->context = &done;

spin_lock_irq(&spidev->spi_lock);

if (spidev->spi == NULL)

status = -ESHUTDOWN;

else

/*调用spi核心中的函数进行数据传输*/

<span style="color:#ff0000;"> status = spi_async(spidev->spi, message);</span>

spin_unlock_irq(&spidev->spi_lock);

if (status == 0) {

/*等待完成量被唤醒*/

wait_for_completion(&done);

status = message->status;

if (status == 0)

status = message->actual_length;

}

return status;

}

</span>

spi_async在spi.h中定义的:

view
plain

<span style="font-size:18px;">static inline int

spi_async(struct spi_device *spi, struct spi_message *message)

{

message->spi = spi;

return spi->master->transfer(spi, message);

}

</span>

这里的master->transfer是在spi_bitbang_start中进行赋值的:

bitbang->master->transfer= spi_bitbang_transfer;

看spi_bitbang_transfer的实现:

view
plain

<span style="font-size:18px;">int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)

{

struct spi_bitbang *bitbang;

unsigned long flags;

int status = 0;

m->actual_length = 0;

m->status = -EINPROGRESS;

/*在spi_alloc_master函数中调用spi_master_set_devdata把struct s3c24xx_spi结构存放起来,而struct spi_bitbang正是struct s3c24xx_spi结构所包含的第一个结构*/

bitbang = spi_master_get_devdata(spi->master);

spin_lock_irqsave(&bitbang->lock, flags);

if (!spi->max_speed_hz)

status = -ENETDOWN;

else {

/*把message加入到bitbang的等待队列中*/

list_add_tail(&m->queue, &bitbang->queue);

/*把bitbang-work加入bitbang->workqueue中,调度运行*/

queue_work(bitbang->workqueue, &bitbang->work);

}

spin_unlock_irqrestore(&bitbang->lock, flags);

return status;

}

EXPORT_SYMBOL_GPL(spi_bitbang_transfer);

</span>

分析工作队列的处理函数:



view
plain

<span style="font-size:18px;">static void bitbang_work(struct work_struct *work)

{

struct spi_bitbang *bitbang =

container_of(work, struct spi_bitbang, work);

unsigned long flags;

spin_lock_irqsave(&bitbang->lock, flags);

/*设置成忙状态*/

bitbang->busy = 1;

/*对bitqueue中的每一个spi_message进行处理*/

while (!list_empty(&bitbang->queue)) {

struct spi_message *m;

struct spi_device *spi;

unsigned nsecs;

struct spi_transfer *t = NULL;

unsigned tmp;

unsigned cs_change;

int status;

int (*setup_transfer)(struct spi_device *,

struct spi_transfer *);

m = container_of(bitbang->queue.next, struct spi_message,

queue);

/*从队列中驱动这个spi_message*/

list_del_init(&m->queue);

spin_unlock_irqrestore(&bitbang->lock, flags);

nsecs = 100;

spi = m->spi;

tmp = 0;

cs_change = 1;

status = 0;

setup_transfer = NULL;

/*对spi_message的transfers上的每个spi_transfer进行处理*/

list_for_each_entry (t, &m->transfers, transfer_list) {

。。。。。。。。。。。。。。。。。

if (t->len) {

if (!m->is_dma_mapped)

t->rx_dma = t->tx_dma = 0;

/*调用bitbang->txrx_bufs进行数据的传输,bitbang->txrx_bufs = s3c24xx_spi_txrx;这个在s3c24xx_spi_probe中进行赋值的*/

<span style="color:#ff0000;">status = bitbang->txrx_bufs(spi, t);</span>

}

。。。。。。。。。。。。。。。。

m->status = status;

/*传输完成,唤醒刚才的那个完成变量*/

m->complete(m->context);

/* restore speed and wordsize */

if (setup_transfer)

setup_transfer(spi, NULL);

if (!(status == 0 && cs_change)) {

ndelay(nsecs);

bitbang->chipselect(spi, BITBANG_CS_INACTIVE);

ndelay(nsecs);

}

spin_lock_irqsave(&bitbang->lock, flags);

}

bitbang->busy = 0;

spin_unlock_irqrestore(&bitbang->lock, flags);

}

</span>

这个工作队列的处理函数中调用了spi controller driver中的传输函数:

view
plain

<span style="font-size:18px;">static int s3c24xx_spi_txrx(struct spi_device *spi, struct spi_transfer *t)

{

struct s3c24xx_spi *hw = to_hw(spi);

dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",

t->tx_buf, t->rx_buf, t->len);

hw->tx = t->tx_buf; //发送指针

hw->rx = t->rx_buf; //接收指针

hw->len = t->len; //需要发送/接收的数目

hw->count = 0; //存放实际spi传输的数据数目

/*初始化了完成量*/

init_completion(&hw->done);

/*

*只需发送第一个字节(如果发送为空,则发送0xff),中断中就会自动发送完其他字节(并接受数据)

*直到所有数据发送完毕且所有数据接收完毕才返回

*/

writeb(hw_txbyte(hw, 0), hw->regs + S3C2410_SPTDAT);

/*等待完成量被唤醒*/

wait_for_completion(&hw->done);

return hw->count;

}

static inline unsigned int hw_txbyte(struct s3c24xx_spi *hw, int count)

{

return hw->tx ? hw->tx[count] : 0xff;

//如果还有数据没接收完且要发送的数据经已发送完毕,发送空数据0xFF

}

</span>

下面来分析中断函数:

view
plain

<span style="font-size:18px;">static irqreturn_t s3c24xx_spi_irq(int irq, void *dev)

{

struct s3c24xx_spi *hw = dev;

/*读取spi的状态寄存器*/

unsigned int spsta = readb(hw->regs + S3C2410_SPSTA);

unsigned int count = hw->count;

/*检测冲突*/

if (spsta & S3C2410_SPSTA_DCOL) {

dev_dbg(hw->dev, "data-collision\n");

/*唤醒完成量*/

complete(&hw->done);

goto irq_done;

}

/*设备忙*/

if (!(spsta & S3C2410_SPSTA_READY)) {

dev_dbg(hw->dev, "spi not ready for tx?\n");

/*唤醒完成量*/

complete(&hw->done);

goto irq_done;

}

hw->count++;

/*接收数据*/

if (hw->rx)

hw->rx[count] = readb(hw->regs + S3C2410_SPRDAT);

count++;

/*如果count小于需要发送或接收数据的数目,发送其他数据*/

if (count < hw->len)

writeb(hw_txbyte(hw, count), hw->regs + S3C2410_SPTDAT);

else

/*唤醒完成量,通知s3c24xx_spi_txrx函数*/

complete(&hw->done);

irq_done:

return IRQ_HANDLED;

}

</span>

至此spi数据传输过程完成,如果不想为自己的SPI设备写驱动,那么可以用Linux自带的spidev.c提供的驱动程序,只要在登记时,把设备名设置成spidev就可以了。spidev.c会在device目录下自动为每一个匹配的SPI设备创建设备节点,节点名"spi%d"。之后,用户程序可以通过字符型设备的通用接口控制SPI设备。需要注意的是,spidev创建的设备在设备模型中属于虚拟设备,他的class是spidev_class,他的父设备是在boardinfo中定义的spi设备
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: