您的位置:首页 > 移动开发 > Android开发

从源码角度看Handler原理

2015-10-20 00:00 459 查看
在Android中,有一个规定就是除了主线程,其他线程不能操作UI视图,因为不这样做的话会出现线程不安全问题。但还有一个规定UI线程在执行一个操作如果5秒内没有响应就会包ANR错误。所以UI线程中不允许访问网络这样的耗时操作,那么问题来了,子线程执行耗时操作,比如从网络获取图片,但子线程不能更新UI,而主线程能更新UI,但不能去下载图片。这样handler消息处理机制就出现了。

1. Handler是什么?

handler是Android给我们提供用来更新UI的一套机制,也是一套消息处理的机制,我们可以发送消息,也可以通过它处理消息。

2. 为什么要使用Handler?

Android在设计时,就封装了一套消息消息创建、传递、处理机制,如果不遵循这样的机制就没办法更新UI,就会抛出异常。

3. Android中为什么要设计只能通过Handler机制更新UI?

解决多线程并发问题。如果允许多线程更新UI会导致界面错乱,如果非要使用多线程并使用加锁机制更新UI又会导致性能下降,所以更新UI的操作全部交给主线程。

4.那么handler机制是怎样的机制呢?

了解handler机制,首先需要清楚四个核心类:
Message:对发送的消息的封装
MessageQueue:消息队列,存放所有的消息
Looper:可以循环读取消息(从MessageQueue中读取)
Handler:处理消息,同时也是发送消息的

具体来看看handler是怎么实现的。

4.1使用1:主线程接收子线程发来的消息(下载图片为例)
1)在主线程中初始化handler对象:

private Handler handler = new Handler(){
@Override
public void handleMessage(Message msg) {
//处理子线程发送过来的message
Bitmap bitmap = (Bitmap)msg.obj;
imageView.setImageBitmap(bitmap);
}
};

2)然后子线程中下载好图片后发送图片给主线程:

new Thread(new Runnable() {
@Override
public void run() {
HttpGet get = new HttpGet(path);
HttpClient client = new DefaultHttpClient();
HttpResponse response = null;
try {
response = client.execute(get);
if (response.getStatusLine().getStatusCode() == 200) {
byte[] arr = EntityUtils.toByteArray(response
.getEntity());
Bitmap bitmap = BitmapFactory.decodeByteArray(arr, 0,
arr.length);
// 下载完成时把图片发送给主线程
// 从MessageQueue中获取可用的Message对象,如果没有可用的Message对象则会创建一个新的Message对象
Message msg = Message.obtain();
// 把发送的图片封装到msg中
msg.obj = bitmap;
// 使用Handler发送msg
handler.sendMessage(msg);// 把msg发送给实例化handler的线程
}
} catch (Exception e) {
e.printStackTrace();
}
}
}).start();

消息的拦截:

/** * 拦截消息测试 * @author Administrator * */
public class ThirdActivity extends Activity {
Handler handler = new Handler(new Callback() {
@Override
public boolean handleMessage(Message msg) {
Log.i("--", "消息都要经过我这里");
/**返回false,消息会继续向下分发,返回true则拦截*/
return true;
}
}) {
@Override
public void handleMessage(Message msg) {
super.handleMessage(msg);
Log.i("--", "我才是处理消息的");
}
};
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
new Thread(new Runnable() {
@Override
public void run() {
handler.sendEmptyMessage(1);
}
}).start();
}
}

3)使用1有关handler机制的操作有:
Handler handler = new Handler();
handleMessage(Message msg);

Message msg = Message.obtain();
handler.sendMessage(msg);

那么现在来看一看它内部到底是怎样执行的。

5.从源码一步一步分析handler原理

5.1Handler handler = new Handler();

public Handler() {
this(null, false);
}

这个无参构造方法会调用两个参数的构造方法,注意上面的参数null和false,如下:

public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}

那来看看这个两个参数的构造方法都做了些什么。
FIND_POTENTIAL_LEAKS这个变量初始化为false
private static final boolean FIND_POTENTIAL_LEAKS = false;
所以直接执行后面的,也就是这些:

mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;

这几句的操作就是得到一个Looper对象和一个MessageQueue对象,mLooper = Looper.myLooper();中Looper.myLooper()方法中是得到当前线程的Looper对象。那么当前线程是什么?在这里,因为我们是在主线程中实例化Handler对象,所以当前线程就是主线程,值得注意的是,主线程在创建时就会维护一个Looper对象和MessageQueue对象,所以这里得到的Looper对象和消息队列都是主线程的。

public static Looper myLooper() {
return sThreadLocal.get();
}

mQueue = mLooper.mQueue;这句说明handler内部的MessageQueue和Looper的MessageQueue是一个。
好,那么handler的初始化阶段先到这里。
5.2 Message msg = Message.obtain();
再来看看这句做了哪些事,
注意:有时候我们会直接这么写Message msg = new Message();

public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
sPoolSize--;
return m;
}
}
return new Message();
}

这里的意思就是如果sPool不为空就返回sPool,否则就new一个新的Message对象。(sPool是回收放在消息池中的对象)

public void recycle() {
clearForRecycle();
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {
next = sPool;
sPool = this;
sPoolSize++;
}
}
}

5.3 handler.sendMessage(msg);
关键的一句终于到了,来看看这个又做了什么。
第一步:

public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
}

第二步:

public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}

第三步:

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}

第四步:

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}

到第四步算是找到能办事的了,看这里都办了哪些事。
1) msg.target = this;可以查看Message源码target就是Handler类型的,这里把msg的target指向this,也就是这个发送消息的handler。

2)queue.enqueueMessage(msg, uptimeMillis);调用queue的enqueueMessage方法,去MessageQueue类中看看。

final boolean enqueueMessage(Message msg, long when) {
if (msg.isInUse()) {
throw new AndroidRuntimeException(msg + " This message is already in use.");
}
if (msg.target == null) {
throw new AndroidRuntimeException("Message must have a target.");
}
boolean needWake;
synchronized (this) {
if (mQuiting) {
RuntimeException e = new RuntimeException(
msg.target + " sending message to a Handler on a dead thread");
Log.w("MessageQueue", e.getMessage(), e);
return false;
}
msg.when = when;
Message p = mMessages;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
}
if (needWake) {
nativeWake(mPtr);
}
return true;
}

很简单,就是把handler发送的msg加入到消息队列中。

5.4handleMessage(Message msg);
好了,最后只用处理msg了。这是个回调方法,所以必须要等到Looper去从消息队列中读取消息时才会执行。
那就去看看Looper.loop();这个循环读取消息的方法。

public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
msg.target.dispatchMessage(msg);
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycle();
}
}

开头几句是得到当前线程的Looper对象,然后同构Looper对象得到queue对象,很明显,5.1已经说了,那么这里得到的就是主线程那个Looper和MessageQueue。然后开始了死循环,一直从消息队列中读取消息,读不到就返回,否则执行后面操作。注意看后面操作,真正处理消息的时候到了。

msg.target.dispatchMessage(msg);关键就是这句。 它调用了msg的target的dispatchMessage方法,之前说了,target就是发送消息的那个handler,好,再会Handler类看dispatchMessage方法。

public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}

很简单,这就是一个消息分发处理嘛。记得handler发送消息有两种方式,一种就是普通的handler.sendMessage(msg);方法,还有一种就是
handler.post(new Runnable(){
@Override
public void run() {
//主线程应该执行的操作
}
});
先来看第一种:直接回调hanleMessage(msg);方法,这样主程序中就执行该操作啦。
再来看第二种:

private static void handleCallback(Message message) {
message.callback.run();
}

调用message.callback的run方法。
从源码可以一步一步看出,如下,message的callback指向handler调用post方法传入的Runnable对象。

private static Message getPostMessage(Runnable r) {
Message m = Message.obtain();
m.callback = r;
return m;
}

再回头看dispatchMessage方法,会调用下面这个方法:

private static void handleCallback(Message message) {
message.callback.run();
}

内部最后调用run方法。
handler原理基本就这样了。

总结:handler对象定义在需要接收本线程或其他线程发送消息的线程中,该线程会维护一个Looper对象和MessageQueue对象,在其他线程或本线程通过handler发送的消息会加入到handler所在线程中的消息队列中,同时Looper的loop()方法会一直读取消息队列,读到消息后,又让发送消息的handler处理这个消息。

源码下载

版权声明:本文为博主原创文章,未经博主允许不得转载。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  android handler 原理