您的位置:首页 > 移动开发 > Android开发

Skia深入分析5——skia文字绘制的实现

2015-10-15 00:00 633 查看
文字绘制主要包括编码转换(主要是中文)、字形解析(点线或image)和实际渲染三个步骤。在这个过程中,字形解析和实际渲染均是耗时步骤。Skia对文字解析的结果做了一套缓存机制。在中文字较多,使用多种字体,绘制的样式(粗/斜体)有变化时,这个缓存会变得很大,因此Skia文字缓存做了内存上的限制。

1、SkPaint

文字绘制与SkPaint的属性相关很大,先回头看下SkPaint相关的属性

class SkPaint
{
private
SkTypeface*     fTypeface;//字体
SkPathEffect*   fPathEffect;//路径绘制效果
SkShader*       fShader;//取色器
SkXfermode*     fXfermode;//混合模式,类似OpenGL里面的Blend设置
SkColorFilter*  fColorFilter;//图像绘制时,自定义图像采样函数时使用
SkMaskFilter*   fMaskFilter;//路径绘制时,按有无像素做进一步自定义改进处理时使用
SkRasterizer*   fRasterizer;//路径绘制时自定义生成像素点的算法时使用
SkDrawLooper*   fLooper;//循环绘制,SkCanvas里面的第二重循环,一般不用关注
SkImageFilter*  fImageFilter;//SkCanvas的第一重循环,绘制后做后处理用,一般不用关注
SkAnnotation*   fAnnotation;//暂时没用到的属性

SkScalar        fTextSize;//文字大小

SkScalar        fTextScaleX;//文字水平方向上的拉伸,仅用于PDF绘制
SkScalar        fTextSkewX;//文字横向扭曲度,仅用于PDF绘制

SkColor         fColor;//纯色,在fShader为空时使用
SkScalar        fWidth;//带边界时(kStroke_Style/kStrokeAndFill_Style)生效,边界的宽度
SkScalar        fMiterLimit;//drawPath时,连接各个path片断时,要求的圆滑连接阈值,Join 类型为默认的kMiter_Join时无效
/*一组不超过32位的属性*/
union {
struct {
// all of these bitfields should add up to 32
unsigned        fFlags : 16;//包含所有的0/1二值属性:
/*
kAntiAlias_Flag       = 0x01,//是否抗锯齿
kDither_Flag          = 0x04,//是否做抖动处理
kUnderlineText_Flag   = 0x08,//是否绘制文字下划线
kStrikeThruText_Flag  = 0x10,//目前未看到其作用
kFakeBoldText_Flag    = 0x20,
kLinearText_Flag      = 0x40,
kSubpixelText_Flag    = 0x80,//文字像素精确采样
kDevKernText_Flag     = 0x100
kLCDRenderText_Flag   = 0x200
kEmbeddedBitmapText_Flag = 0x400,
kAutoHinting_Flag     = 0x800,
kVerticalText_Flag    = 0x1000,//是否竖向绘制文字
kGenA8FromLCD_Flag    = 0x2000,
kDistanceFieldTextTEMP_Flag = 0x4000,
kAllFlags = 0xFFFF
*/

unsigned        fTextAlign : 2;//文字对齐方式,取值如下:
/*
enum Align {
kLeft_Align,//左对齐
kCenter_Align,//居中
kRight_Align,//右对齐
};
*/

unsigned        fCapType : 2;//边界连接类型,分无连接,圆角连接,半方形连接
unsigned        fJoinType : 2;//Path片断连接类型

unsigned        fStyle : 2;//绘制模式,填充边界/区域
/*
enum Style {
kFill_Style, //填充区域
kStroke_Style,//绘制边界
kStrokeAndFill_Style,//填充区域并绘制边界
};
*/

unsigned        fTextEncoding : 2;//文字编码格式,支持如下几种
enum TextEncoding {
kUTF8_TextEncoding,//utf-8,默认格式
kUTF16_TextEncoding,
kUTF32_TextEncoding,
kGlyphID_TextEncoding
};

unsigned        fHinting : 2;
unsigned        fFilterLevel : 2;//在图像绘制时提到的采样质量要求
//unsigned      fFreeBits : 2;
};
uint32_t fBitfields;
};
uint32_t fDirtyBits;//记录哪些属性被改变了,以便更新相关的缓存
};


2、字体绘制基本流程



SkCanvas

绘制文字和下划线

SkDraw

两种绘制方式:

(1)将文字解析为路径,然后绘制路径,缓存路径(drawText_asPaths)。

void SkDraw::drawText_asPaths(const char text[], size_t byteLength,
SkScalar x, SkScalar y,
const SkPaint& paint) const {
SkDEBUGCODE(this->validate();)

SkTextToPathIter iter(text, byteLength, paint, true);

SkMatrix    matrix;
matrix.setScale(iter.getPathScale(), iter.getPathScale());
matrix.postTranslate(x, y);

const SkPath* iterPath;
SkScalar xpos, prevXPos = 0;

while (iter.next(&iterPath, &xpos)) {
matrix.postTranslate(xpos - prevXPos, 0);
if (iterPath) {
const SkPaint& pnt = iter.getPaint();
if (fDevice) {
fDevice->drawPath(*this, *iterPath, pnt, &matrix, false);
} else {
this->drawPath(*iterPath, pnt, &matrix, false);
}
}
prevXPos = xpos;
}
}


(2)将文字解析为Mask(32*32的A8图片),然后绘制模板,缓存模板。

SkDrawCacheProc glyphCacheProc = paint.getDrawCacheProc();

SkAutoGlyphCache    autoCache(paint, &fDevice->fLeakyProperties, fMatrix);
SkGlyphCache*       cache = autoCache.getCache();

// transform our starting point
{
SkPoint loc;
fMatrix->mapXY(x, y, &loc);
x = loc.fX;
y = loc.fY;
}

// need to measure first
if (paint.getTextAlign() != SkPaint::kLeft_Align) {
SkVector    stop;

measure_text(cache, glyphCacheProc, text, byteLength, &stop);

SkScalar    stopX = stop.fX;
SkScalar    stopY = stop.fY;

if (paint.getTextAlign() == SkPaint::kCenter_Align) {
stopX = SkScalarHalf(stopX);
stopY = SkScalarHalf(stopY);
}
x -= stopX;
y -= stopY;
}

const char* stop = text + byteLength;

SkAAClipBlitter     aaBlitter;
SkAutoBlitterChoose blitterChooser;
SkBlitter*          blitter = NULL;
if (needsRasterTextBlit(*this)) {
blitterChooser.choose(*fBitmap, *fMatrix, paint);
blitter = blitterChooser.get();
if (fRC->isAA()) {
aaBlitter.init(blitter, &fRC->aaRgn());
blitter = &aaBlitter;
}
}

SkAutoKern          autokern;
SkDraw1Glyph        d1g;
SkDraw1Glyph::Proc  proc = d1g.init(this, blitter, cache, paint);

SkFixed fxMask = ~0;
SkFixed fyMask = ~0;
if (cache->isSubpixel()) {
SkAxisAlignment baseline = SkComputeAxisAlignmentForHText(*fMatrix);
if (kX_SkAxisAlignment == baseline) {
fyMask = 0;
d1g.fHalfSampleY = SK_FixedHalf;
} else if (kY_SkAxisAlignment == baseline) {
fxMask = 0;
d1g.fHalfSampleX = SK_FixedHalf;
}
}

SkFixed fx = SkScalarToFixed(x) + d1g.fHalfSampleX;
SkFixed fy = SkScalarToFixed(y) + d1g.fHalfSampleY;

while (text < stop) {
const SkGlyph& glyph = glyphCacheProc(cache, &text, fx & fxMask, fy & fyMask);

fx += autokern.adjust(glyph);

if (glyph.fWidth) {
proc(d1g, fx, fy, glyph);
}

fx += glyph.fAdvanceX;
fy += glyph.fAdvanceY;
}


cacheProc是翻译字符编码的函数,由SkPaint::getDrawCacheProc产生:

SkDrawCacheProc SkPaint::getDrawCacheProc() const {
static const SkDrawCacheProc gDrawCacheProcs[] = {
sk_getMetrics_utf8_00,
sk_getMetrics_utf16_00,
sk_getMetrics_utf32_00,
sk_getMetrics_glyph_00,

sk_getMetrics_utf8_xy,
sk_getMetrics_utf16_xy,
sk_getMetrics_utf32_xy,
sk_getMetrics_glyph_xy
};

unsigned index = this->getTextEncoding();
if (fFlags & kSubpixelText_Flag) {
index += 4;
}

SkASSERT(index < SK_ARRAY_COUNT(gDrawCacheProcs));
return gDrawCacheProcs[index];
}


SkGlyphCache:

字形解析的结果缓存。

SkScalerContext:

负责字形的解析,有多种实现。Android中是用FreeType:SkScalerContext_FreeType。主要是generateImage和generatePath两个方法:

generateImage:

void SkScalerContext_FreeType::generateImage(const SkGlyph& glyph) {
SkAutoMutexAcquire  ac(gFTMutex);

FT_Error    err;

if (this->setupSize()) {
goto ERROR;
}

err = FT_Load_Glyph( fFace, glyph.getGlyphID(fBaseGlyphCount), fLoadGlyphFlags);
if (err != 0) {
SkDEBUGF(("SkScalerContext_FreeType::generateImage: FT_Load_Glyph(glyph:%d width:%d height:%d rb:%d flags:%d) returned 0x%x\n",
glyph.getGlyphID(fBaseGlyphCount), glyph.fWidth, glyph.fHeight, glyph.rowBytes(), fLoadGlyphFlags, err));
ERROR:
memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight);
return;
}

emboldenIfNeeded(fFace, fFace->glyph);
generateGlyphImage(fFace, glyph);
}
void SkScalerContext_FreeType_Base::generateGlyphImage(FT_Face face, const SkGlyph& glyph) {
const bool doBGR = SkToBool(fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag);
const bool doVert = SkToBool(fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag);

switch ( face->glyph->format ) {
case FT_GLYPH_FORMAT_OUTLINE: {
FT_Outline* outline = &face->glyph->outline;
FT_BBox     bbox;
FT_Bitmap   target;

int dx = 0, dy = 0;
if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) {
dx = SkFixedToFDot6(glyph.getSubXFixed());
dy = SkFixedToFDot6(glyph.getSubYFixed());
// negate dy since freetype-y-goes-up and skia-y-goes-down
dy = -dy;
}
FT_Outline_Get_CBox(outline, &bbox);
/*
what we really want to do for subpixel is
offset(dx, dy)
compute_bounds
offset(bbox & !63)
but that is two calls to offset, so we do the following, which
achieves the same thing with only one offset call.
*/
FT_Outline_Translate(outline, dx - ((bbox.xMin + dx) & ~63),
dy - ((bbox.yMin + dy) & ~63));

if (SkMask::kLCD16_Format == glyph.fMaskFormat) {
FT_Render_Glyph(face->glyph, doVert ? FT_RENDER_MODE_LCD_V : FT_RENDER_MODE_LCD);
SkMask mask;
glyph.toMask(&mask);
if (fPreBlend.isApplicable()) {
copyFT2LCD16<true>(face->glyph->bitmap, mask, doBGR,
fPreBlend.fR, fPreBlend.fG, fPreBlend.fB);
} else {
copyFT2LCD16<false>(face->glyph->bitmap, mask, doBGR,
fPreBlend.fR, fPreBlend.fG, fPreBlend.fB);
}
} else {
target.width = glyph.fWidth;
target.rows = glyph.fHeight;
target.pitch = glyph.rowBytes();
target.buffer = reinterpret_cast<uint8_t*>(glyph.fImage);
target.pixel_mode = compute_pixel_mode( (SkMask::Format)fRec.fMaskFormat);
target.num_grays = 256;

memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight);
FT_Outline_Get_Bitmap(face->glyph->library, outline, &target);
}
} break;

case FT_GLYPH_FORMAT_BITMAP: {
FT_Pixel_Mode pixel_mode = static_cast<FT_Pixel_Mode>(face->glyph->bitmap.pixel_mode);
SkMask::Format maskFormat = static_cast<SkMask::Format>(glyph.fMaskFormat);

// Assume that the other formats do not exist.
SkASSERT(FT_PIXEL_MODE_MONO == pixel_mode ||
FT_PIXEL_MODE_GRAY == pixel_mode ||
FT_PIXEL_MODE_BGRA == pixel_mode);

// These are the only formats this ScalerContext should request.
SkASSERT(SkMask::kBW_Format == maskFormat ||
SkMask::kA8_Format == maskFormat ||
SkMask::kARGB32_Format == maskFormat ||
SkMask::kLCD16_Format == maskFormat);

if (fRec.fFlags & SkScalerContext::kEmbolden_Flag &&
!(face->style_flags & FT_STYLE_FLAG_BOLD))
{
FT_GlyphSlot_Own_Bitmap(face->glyph);
FT_Bitmap_Embolden(face->glyph->library, &face->glyph->bitmap,
kBitmapEmboldenStrength, 0);
}

// If no scaling needed, directly copy glyph bitmap.
if (glyph.fWidth == face->glyph->bitmap.width &&
glyph.fHeight == face->glyph->bitmap.rows &&
glyph.fTop == -face->glyph->bitmap_top &&
glyph.fLeft == face->glyph->bitmap_left)
{
SkMask dstMask;
glyph.toMask(&dstMask);
copyFTBitmap(face->glyph->bitmap, dstMask);
break;
}

// Otherwise, scale the bitmap.

// Copy the FT_Bitmap into an SkBitmap (either A8 or ARGB)
SkBitmap unscaledBitmap;
unscaledBitmap.allocPixels(SkImageInfo::Make(face->glyph->bitmap.width,
face->glyph->bitmap.rows,
SkColorType_for_FTPixelMode(pixel_mode),
kPremul_SkAlphaType));

SkMask unscaledBitmapAlias;
unscaledBitmapAlias.fImage = reinterpret_cast<uint8_t*>(unscaledBitmap.getPixels());
unscaledBitmapAlias.fBounds.set(0, 0, unscaledBitmap.width(), unscaledBitmap.height());
unscaledBitmapAlias.fRowBytes = unscaledBitmap.rowBytes();
unscaledBitmapAlias.fFormat = SkMaskFormat_for_SkColorType(unscaledBitmap.colorType());
copyFTBitmap(face->glyph->bitmap, unscaledBitmapAlias);

// Wrap the glyph's mask in a bitmap, unless the glyph's mask is BW or LCD.
// BW requires an A8 target for resizing, which can then be down sampled.
// LCD should use a 4x A8 target, which will then be down sampled.
// For simplicity, LCD uses A8 and is replicated.
int bitmapRowBytes = 0;
if (SkMask::kBW_Format != maskFormat && SkMask::kLCD16_Format != maskFormat) {
bitmapRowBytes = glyph.rowBytes();
}
SkBitmap dstBitmap;
dstBitmap.setInfo(SkImageInfo::Make(glyph.fWidth, glyph.fHeight,
SkColorType_for_SkMaskFormat(maskFormat),
kPremul_SkAlphaType),
bitmapRowBytes);
if (SkMask::kBW_Format == maskFormat || SkMask::kLCD16_Format == maskFormat) {
dstBitmap.allocPixels();
} else {
dstBitmap.setPixels(glyph.fImage);
}

// Scale unscaledBitmap into dstBitmap.
SkCanvas canvas(dstBitmap);
canvas.clear(SK_ColorTRANSPARENT);
canvas.scale(SkIntToScalar(glyph.fWidth) / SkIntToScalar(face->glyph->bitmap.width),
SkIntToScalar(glyph.fHeight) / SkIntToScalar(face->glyph->bitmap.rows));
SkPaint paint;
paint.setFilterLevel(SkPaint::kMedium_FilterLevel);
canvas.drawBitmap(unscaledBitmap, 0, 0, &paint);

// If the destination is BW or LCD, convert from A8.
if (SkMask::kBW_Format == maskFormat) {
// Copy the A8 dstBitmap into the A1 glyph.fImage.
SkMask dstMask;
glyph.toMask(&dstMask);
packA8ToA1(dstMask, dstBitmap.getAddr8(0, 0), dstBitmap.rowBytes());
} else if (SkMask::kLCD16_Format == maskFormat) {
// Copy the A8 dstBitmap into the LCD16 glyph.fImage.
uint8_t* src = dstBitmap.getAddr8(0, 0);
uint16_t* dst = reinterpret_cast<uint16_t*>(glyph.fImage);
for (int y = dstBitmap.height(); y --> 0;) {
for (int x = 0; x < dstBitmap.width(); ++x) {
dst[x] = grayToRGB16(src[x]);
}
dst = (uint16_t*)((char*)dst + glyph.rowBytes());
src += dstBitmap.rowBytes();
}
}

} break;

default:
SkDEBUGFAIL("unknown glyph format");
memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight);
return;
}

// We used to always do this pre-USE_COLOR_LUMINANCE, but with colorlum,
// it is optional
#if defined(SK_GAMMA_APPLY_TO_A8)
if (SkMask::kA8_Format == glyph.fMaskFormat && fPreBlend.isApplicable()) {
uint8_t* SK_RESTRICT dst = (uint8_t*)glyph.fImage;
unsigned rowBytes = glyph.rowBytes();

for (int y = glyph.fHeight - 1; y >= 0; --y) {
for (int x = glyph.fWidth - 1; x >= 0; --x) {
dst[x] = fPreBlend.fG[dst[x]];
}
dst += rowBytes;
}
}
#endif
}
generatePath:

void SkScalerContext_FreeType::generatePath(const SkGlyph& glyph,
SkPath* path) {
SkAutoMutexAcquire  ac(gFTMutex);

SkASSERT(&glyph && path);

if (this->setupSize()) {
path->reset();
return;
}

uint32_t flags = fLoadGlyphFlags;
flags |= FT_LOAD_NO_BITMAP; // ignore embedded bitmaps so we're sure to get the outline
flags &= ~FT_LOAD_RENDER;   // don't scan convert (we just want the outline)

FT_Error err = FT_Load_Glyph( fFace, glyph.getGlyphID(fBaseGlyphCount), flags);

if (err != 0) {
SkDEBUGF(("SkScalerContext_FreeType::generatePath: FT_Load_Glyph(glyph:%d flags:%d) returned 0x%x\n",
glyph.getGlyphID(fBaseGlyphCount), flags, err));
path->reset();
return;
}
emboldenIfNeeded(fFace, fFace->glyph);

generateGlyphPath(fFace, path);

// The path's origin from FreeType is always the horizontal layout origin.
// Offset the path so that it is relative to the vertical origin if needed.
if (fRec.fFlags & SkScalerContext::kVertical_Flag) {
FT_Vector vector;
vector.x = fFace->glyph->metrics.vertBearingX - fFace->glyph->metrics.horiBearingX;
vector.y = -fFace->glyph->metrics.vertBearingY - fFace->glyph->metrics.horiBearingY;
FT_Vector_Transform(&vector, &fMatrix22);
path->offset(SkFDot6ToScalar(vector.x), -SkFDot6ToScalar(vector.y));
}
}


3、字体缓存管理

SkTypeface是Skia中的字体类,对应可有多种字体库解析实现。

由于Android上面使用的是FreeType,因此也只讲FreeType分支。

FreeType的使用方法可参考:http://blog.csdn.net/furtherchan/article/details/8667884

字体建立的代码如下:

SkTypeface* SkTypeface::CreateFromStream(SkStream* stream) {
return SkFontHost::CreateTypefaceFromStream(stream);
}

bool find_name_and_attributes(SkStream* stream, SkString* name,
SkTypeface::Style* style, bool* isFixedPitch) {
FT_Library  library;
if (FT_Init_FreeType(&library)) {
return false;
}

FT_Open_Args    args;
memset(&args, 0, sizeof(args));

const void* memoryBase = stream->getMemoryBase();
FT_StreamRec    streamRec;

if (NULL != memoryBase) {
args.flags = FT_OPEN_MEMORY;
args.memory_base = (const FT_Byte*)memoryBase;
args.memory_size = stream->getLength();
} else {
memset(&streamRec, 0, sizeof(streamRec));
streamRec.size = stream->getLength();
streamRec.descriptor.pointer = stream;
streamRec.read  = sk_stream_read;
streamRec.close = sk_stream_close;

args.flags = FT_OPEN_STREAM;
args.stream = &streamRec;
}

FT_Face face;
if (FT_Open_Face(library, &args, 0, &face)) {
FT_Done_FreeType(library);
return false;
}

int tempStyle = SkTypeface::kNormal;
if (face->style_flags & FT_STYLE_FLAG_BOLD) {
tempStyle |= SkTypeface::kBold;
}
if (face->style_flags & FT_STYLE_FLAG_ITALIC) {
tempStyle |= SkTypeface::kItalic;
}

if (name) {
name->set(face->family_name);
}
if (style) {
*style = (SkTypeface::Style) tempStyle;
}
if (isFixedPitch) {
*isFixedPitch = FT_IS_FIXED_WIDTH(face);
}

FT_Done_Face(face);
FT_Done_FreeType(library);
return true;
}


对于Android,在系统初始化时,所有字体文件在预加载时即被解析,包装为SkFaceRec,存为一个全局链表。(frameworks/base/graphic 和 frameworks/base/core/jni目录下面的代码)

public class Typeface {
/*
.......
*/
private static void init() {
// Load font config and initialize Minikin state
File systemFontConfigLocation = getSystemFontConfigLocation();
File configFilename = new File(systemFontConfigLocation, FONTS_CONFIG);
try {
FileInputStream fontsIn = new FileInputStream(configFilename);
FontListParser.Config fontConfig = FontListParser.parse(fontsIn);

List<FontFamily> familyList = new ArrayList<FontFamily>();
// Note that the default typeface is always present in the fallback list;
// this is an enhancement from pre-Minikin behavior.
for (int i = 0; i < fontConfig.families.size(); i++) {
Family f = fontConfig.families.get(i);
if (i == 0 || f.name == null) {
familyList.add(makeFamilyFromParsed(f));
}
}
sFallbackFonts = familyList.toArray(new FontFamily[familyList.size()]);
setDefault(Typeface.createFromFamilies(sFallbackFonts));

Map<String, Typeface> systemFonts = new HashMap<String, Typeface>();
for (int i = 0; i < fontConfig.families.size(); i++) {
Typeface typeface;
Family f = fontConfig.families.get(i);
if (f.name != null) {
if (i == 0) {
// The first entry is the default typeface; no sense in
// duplicating the corresponding FontFamily.
typeface = sDefaultTypeface;
} else {
FontFamily fontFamily = makeFamilyFromParsed(f);
FontFamily[] families = { fontFamily };
typeface = Typeface.createFromFamiliesWithDefault(families);
}
systemFonts.put(f.name, typeface);
}
}
for (FontListParser.Alias alias : fontConfig.aliases) {
Typeface base = systemFonts.get(alias.toName);
Typeface newFace = base;
int weight = alias.weight;
if (weight != 400) {
newFace = new Typeface(nativeCreateWeightAlias(base.native_instance, weight));
}
systemFonts.put(alias.name, newFace);
}
sSystemFontMap = systemFonts;

} catch (RuntimeException e) {
Log.w(TAG, "Didn't create default family (most likely, non-Minikin build)", e);
// TODO: normal in non-Minikin case, remove or make error when Minikin-only
} catch (FileNotFoundException e) {
Log.e(TAG, "Error opening " + configFilename);
} catch (IOException e) {
Log.e(TAG, "Error reading " + configFilename);
} catch (XmlPullParserException e) {
Log.e(TAG, "XML parse exception for " + configFilename);
}
}

static {
init();
// Set up defaults and typefaces exposed in public API
DEFAULT         = create((String) null, 0);
DEFAULT_BOLD    = create((String) null, Typeface.BOLD);
SANS_SERIF      = create("sans-serif", 0);
SERIF           = create("serif", 0);
MONOSPACE       = create("monospace", 0);

sDefaults = new Typeface[] {
DEFAULT,
DEFAULT_BOLD,
create((String) null, Typeface.ITALIC),
create((String) null, Typeface.BOLD_ITALIC),
};

}
/*
......
*/
}


SkTypeface 记录一个字体的id,在使用时,到链表中查出相关的字体。

对一个字体和样式,建一个 SkGlyphCache缓存,内含一个 SkScalerContext 和一个 SkGlyph 的哈希表,SkGlyph 缓存一个字体中一个字解析出来的位图。此有内存容量限制,当超过容量时,会清除之前缓存的位图。Hash冲突时,直接生成新字形替换原来的字形。

缓存限制的内存宏详见:src/core/SkGlyphCache_Globals.h。和include/core/SkUserConfig.h中的SK_DEFAULT_FONT_CACHE_LIMIT宏

struct SkGlyph {
void*       fImage;
SkPath*     fPath;
SkFixed     fAdvanceX, fAdvanceY;

uint32_t    fID;
uint16_t    fWidth, fHeight;
int16_t     fTop, fLeft;

void*       fDistanceField;
uint8_t     fMaskFormat;
int8_t      fRsbDelta, fLsbDelta;  // used by auto-kerning
};


当绘制字体只绘边界或者位图缓存机制不好处理时,将字体解析成点线,构成SkPath,也做缓存。



版权声明:本文为博主原创文章,未经博主允许不得转载。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息