您的位置:首页 > 产品设计 > UI/UE

GCD之dispatch queue深入浅出

2015-08-15 13:55 447 查看
GCD之dispatch queue深入浅出

分类:

iPhone

2014-01-22 18:28 1891人阅读
评论(0) 收藏
举报

iOS中多线程编程工具主要有:

NSThread
NSOperation
GCD

这三种方法都简单易用,各有千秋.但无疑GCD是最有诱惑力的,因为其本身是apple为多核的并行运算提出的解决方案.虽然当前移动平台用双核的不多,但不影响GCD作为多线程编程的利器(ipad2已经是双核了,这无疑是一个趋势).
http://www.cnblogs.com/scorpiozj/archive/2011/07/25/2116459.html
GCD是和block紧密相连的,所以最好先了解下block(可以查看这里).GCD是C
level的函数,这意味着它也提供了C的函数指针作为参数,方便了C程序员.

一、下面首先来看GCD的使用:

dispatch_async(dispatch_queue_t queue, dispatch_block_t block);

async表明异步运行,block代表的是你要做的事情,queue则是你把任务交给谁来处理了.(除了async,还有sync,delay,本文以async为例).

之所以程序中会用到多线程是因为程序往往会需要读取数据,然后更新UI.为了良好的用户体验,读取数据的操作会倾向于在后台运行,这样以避免阻塞主线程.GCD里就有三种queue来处理.

先来介绍一下 Main queue:

  顾名思义,运行在主线程,由dispatch_get_main_queue获得.和ui相关的就要使用Main
Queue.

[cpp] view plaincopy

//GCD下载图片刷新主界面的例子

/*

- (IBAction)touchUpInsideByThreadOne:(id)sender {

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

NSURL * url = [NSURL URLWithString:@"http://avatar.csdn.net/2/C/D/1_totogo2010.jpg"];

NSData * data = [[NSData alloc]initWithContentsOfURL:url];

UIImage *image = [[UIImage alloc]initWithData:data];

if (data != nil) {

dispatch_async(dispatch_get_main_queue(), ^{

self.imageView.image = image;

});

}

});

}*/

通过与线程池的配合,dispatch queue分为下面两种:而系统默认就有一个串行队列main_queue和并行队列global_queue:

Serial Dispatch Queue --
线程池只提供一个线程用来执行任务,所以后一个任务必须等到前一个任务执行结束才能开始。
Concurrent Dispatch Queue --
线程池提供多个线程来执行任务,所以可以按序启动多个任务并发执行。

而系统默认就有一个串行队列main_queue和并行队列global_queue:

[cpp] view plaincopy

dispatch_queue_t globalQ = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

dispatch_queue_t mainQ = dispatch_get_main_queue();

通常,我们可以在global_queue中做一些long-running的任务,完成后在main_queue中更新UI,避免UI阻塞,无法响应用户操作:

[cpp] view plaincopy

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

// long-running task

dispatch_async(dispatch_get_main_queue(), ^{

// update UI

});

});

1.Serial quque(private dispatch queue)

  每次运行一个任务,可以添加多个,执行次序FIFO.
通常是指程序员生成的,比如:

NSDate *da = [NSDate date];

NSString *daStr = [da description];

const char *queueName = [daStr UTF8String];

dispatch_queue_t myQueue = dispatch_queue_create(queueName, DISPATCH_QUEUE_PRIORITY_DEFAULT);

下面还是下载图片例子:

[cpp] view plaincopy

- (IBAction)touchUpInsideByThreadOne:(id)sender {

NSDate *da = [NSDate date];

NSString *daStr = [da description];

const char *queueName = [daStr UTF8String];

dispatch_queue_t myQueue = dispatch_queue_create(queueName, NULL);

dispatch_async(myQueue, ^{

NSURL * url = [NSURL URLWithString:@"http://avatar.csdn.net/2/C/D/1_totogo2010.jpg"];

NSData * data = [[NSData alloc]initWithContentsOfURL:url];

UIImage *image = [[UIImage alloc]initWithData:data];

if (data != nil) {

dispatch_async(dispatch_get_main_queue(), ^{

self.imageView.image = image;

});

}

});

dispatch_release(myQueue);

}

为了验证Serial queue的FIFO特性,写了如下的验证代码:发现的确是顺序执行的。

[cpp] view plaincopy

- (IBAction)touchUpInsideByThreadOne:(id)sender {

NSDate *da = [NSDate date];

NSString *daStr = [da description];

const char *queueName = [daStr UTF8String];

dispatch_queue_t myQueue = dispatch_queue_create(queueName, DISPATCH_QUEUE_SERIAL);

dispatch_async(myQueue, ^{

[NSThread sleepForTimeInterval:6];

NSLog(@"[NSThread sleepForTimeInterval:6];");

});

dispatch_async(myQueue, ^{

[NSThread sleepForTimeInterval:3];

NSLog(@"[NSThread sleepForTimeInterval:3];");

});

dispatch_async(myQueue, ^{

[NSThread sleepForTimeInterval:1];

NSLog(@"[NSThread sleepForTimeInterval:1];");

});

dispatch_release(myQueue);

}

运行结果为:

[cpp] view plaincopy

2013-07-24 16:37:14.397 NSThreadAndBlockDemo[1924:12303] [NSThread sleepForTimeInterval:6];

2013-07-24 16:37:17.399 NSThreadAndBlockDemo[1924:12303] [NSThread sleepForTimeInterval:3];

2013-07-24 16:37:18.401 NSThreadAndBlockDemo[1924:12303] [NSThread sleepForTimeInterval:1];

3. Concurrent queue(global dispatch queue):

可以同时运行多个任务,每个任务的启动时间是按照加入queue的顺序,结束的顺序依赖各自的任务.使用dispatch_get_global_queue获得.

[cpp] view plaincopy

- (IBAction)touchUpInsideByThreadOne:(id)sender {

dispatch_queue_t myQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

dispatch_async(myQueue, ^{

[NSThread sleepForTimeInterval:6];

NSLog(@"[NSThread sleepForTimeInterval:6];");

});

dispatch_async(myQueue, ^{

[NSThread sleepForTimeInterval:3];

NSLog(@"[NSThread sleepForTimeInterval:3];");

});

dispatch_async(myQueue, ^{

[NSThread sleepForTimeInterval:1];

NSLog(@"[NSThread sleepForTimeInterval:1];");

});

dispatch_release(myQueue);

}

运行的结果为:

[cpp] view plaincopy

2013-07-24 16:38:41.660 NSThreadAndBlockDemo[1944:12e03] [NSThread sleepForTimeInterval:1];

2013-07-24 16:38:43.660 NSThreadAndBlockDemo[1944:12b03] [NSThread sleepForTimeInterval:3];

2013-07-24 16:38:46.660 NSThreadAndBlockDemo[1944:12303] [NSThread sleepForTimeInterval:6];

二、dispatch_group_async的使用

dispatch_group_async可以实现监听一组任务是否完成,完成后得到通知执行其他的操作。这个方法很有用,比如你执行三个下载任务,当三个任务都下载完成后你才通知界面说完成的了。下面是一段例子代码:

[cpp] view plaincopy

- (IBAction)touchUpInsideByThreadOne:(id)sender {

dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

dispatch_group_t group = dispatch_group_create();

dispatch_group_async(group, queue, ^{

[NSThread sleepForTimeInterval:6];

NSLog(@"group1 [NSThread sleepForTimeInterval:6];");

});

dispatch_group_async(group, queue, ^{

[NSThread sleepForTimeInterval:3];

NSLog(@"group2 [NSThread sleepForTimeInterval:3];");

});

dispatch_group_async(group, queue, ^{

[NSThread sleepForTimeInterval:1];

NSLog(@"group3 [NSThread sleepForTimeInterval:1];");

});

dispatch_group_notify(group, dispatch_get_main_queue(), ^{

NSLog(@"main thread.");

});

dispatch_release(group);

}

执行结果为:

[cpp] view plaincopy

2013-07-24 16:48:23.063 NSThreadAndBlockDemo[2004:12e03] group3 [NSThread sleepForTimeInterval:1];

2013-07-24 16:48:25.063 NSThreadAndBlockDemo[2004:12b03] group2 [NSThread sleepForTimeInterval:3];

2013-07-24 16:48:28.063 NSThreadAndBlockDemo[2004:12303] group1 [NSThread sleepForTimeInterval:6];

2013-07-24 16:48:28.065 NSThreadAndBlockDemo[2004:11303] main thread.

果然,dispatch_group_async只会监听最终的结果完成后,并通知main queue,那如果是我们需要顺序执行的话呢?请看下面的dispatch_barrier_async

3dispatch_barrier_async的使用

dispatch_barrier_async是在前面的任务执行结束后它才执行,而且它后面的任务等它执行完成之后才会执行

例子代码如下:

[cpp] view plaincopy

- (IBAction)touchUpInsideByThreadOne:(id)sender {

dispatch_queue_t queue = dispatch_queue_create("gcdtest.rongfzh.yc", DISPATCH_QUEUE_CONCURRENT);

dispatch_async(queue, ^{

[NSThread sleepForTimeInterval:3];

NSLog(@"dispatch_async1");

});

dispatch_async(queue, ^{

[NSThread sleepForTimeInterval:1];

NSLog(@"dispatch_async2");

});

dispatch_barrier_async(queue, ^{

NSLog(@"dispatch_barrier_async");

[NSThread sleepForTimeInterval:0.5];

});

dispatch_async(queue, ^{

[NSThread sleepForTimeInterval:1];

NSLog(@"dispatch_async3");

});

}

执行结果为:

[cpp] view plaincopy

2013-07-24 17:01:54.580 NSThreadAndBlockDemo[2153:12b03] dispatch_async2

2013-07-24 17:01:56.580 NSThreadAndBlockDemo[2153:12303] dispatch_async1

2013-07-24 17:01:56.580 NSThreadAndBlockDemo[2153:12303] dispatch_barrier_async

2013-07-24 17:01:58.083 NSThreadAndBlockDemo[2153:12303] dispatch_async3

如果使用dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);会发现运行结果为:

[cpp] view plaincopy

2013-07-24 17:07:17.577 NSThreadAndBlockDemo[2247:12e03] dispatch_barrier_async

2013-07-24 17:07:18.579 NSThreadAndBlockDemo[2247:15207] dispatch_async3

2013-07-24 17:07:19.578 NSThreadAndBlockDemo[2247:12b03] dispatch_async2

2013-07-24 17:07:20.577 NSThreadAndBlockDemo[2247:12303] dispatch_async1

说明dispatch_barrier_async的顺序执行还是依赖queue的类型啊,必需要queue的类型为dispatch_queue_create创建的,而且attr参数值必需是DISPATCH_QUEUE_CONCURRENT类型,前面两个非dispatch_barrier_async的类型的执行是依赖其本身的执行时间的,如果attr如果是DISPATCH_QUEUE_SERIAL时,那就完全是符合Serial
queue的FIFO特征了。

4dispatch_apply

执行某个代码片段N次。

dispatch_apply(5, globalQ, ^(size_t index) {

// 执行5次

});

5dispatch_once

dispatch_once这个函数,它可以保证整个应用程序生命周期中某段代码只被执行一次

[cpp] view plaincopy

static dispatch_once_t onceToken;

dispatch_once(&onceToken, ^{

// code to be executed once

});

6、dispatch_after

有时候我们需要等个几秒钟然后做个动画或者给个提示,这时候可以用dispatch_after这个函数:

[cpp] view plaincopy

double delayInSeconds = 2.0;

dispatch_time_t popTime = dispatch_time(DISPATCH_TIME_NOW, delayInSeconds * NSEC_PER_SEC);

dispatch_after(popTime, dispatch_get_main_queue(), ^(void){

// code to be executed on the main queue after delay

});

7dispatch_set_target_queue

通过dispatch_set_target_queue函数可以设置一个dispatch
queue的优先级,或者指定一个dispatch source相应的事件处理提交到哪个queue上。

[cpp] view plaincopy

dispatch_set_target_queue(serialQ, globalQ);

由此可见,GCD的使用非常简单,以我的使用经验来看,以后会逐步淘汰使用NSOperation而改用GCD.

后台运行

使用block的另一个用处是可以让程序在后台较长久的运行。在以前,当app被按home键退出后,app仅有最多5秒钟的时候做一些保存或清理资源的工作。但是应用可以调用UIApplication的beginBackgroundTaskWithExpirationHandler方法,让app最多有10分钟的时间在后台长久运行。这个时间可以用来做清理本地缓存,发送统计数据等工作。

让程序在后台长久运行的示例代码如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
// AppDelegate.h文件

@property (assign,
nonatomic) UIBackgroundTaskIdentifier
backgroundUpdateTask;

// AppDelegate.m文件

- (void)applicationDidEnterBackground:(UIApplication
*)application

{

[self beingBackgroundUpdateTask];

//
在这里加上你需要长久运行的代码

[self endBackgroundUpdateTask];

}

- (void)beingBackgroundUpdateTask

{

self.backgroundUpdateTask
= [[UIApplication sharedApplication]
beginBackgroundTaskWithExpirationHandler:^{

[self
endBackgroundUpdateTask];

}];

}

- (void)endBackgroundUpdateTask

{

[[UIApplication
sharedApplication] endBackgroundTask:
self.backgroundUpdateTask];

self.backgroundUpdateTask
= UIBackgroundTaskInvalid;

}
总结

总体来说,GCD能够极大地方便开发者进行多线程编程。大家应该尽量使用GCD来处理后台线程和UI线程的交互。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: