您的位置:首页 > 其它

经典算法题每日演练——第十四题 Prim算法

2015-07-28 16:33 232 查看
图论在数据结构中是非常有趣而复杂的,作为web码农的我,在实际开发中一直没有找到它的使用场景,不像树那样的频繁使用,不过还是准备

仔细的把图论全部过一遍。

一:最小生成树

图中有一个好玩的东西叫做生成树,就是用边来把所有的顶点联通起来,前提条件是最后形成的联通图中不能存在回路,所以就形成这样一个

推理:假设图中的顶点有n个,则生成树的边有n-1条,多一条会存在回路,少一路则不能把所有顶点联通起来,如果非要在图中加上权重,则生成树

中权重最小的叫做最小生成树。



对于上面这个带权无向图来说,它的生成树有多个,同样最小生成树也有多个,因为我们比的是权重的大小。

二:Prim算法

求最小生成树的算法有很多,常用的是Prim算法和Kruskal算法,为了保证单一职责,我把Kruskal算法放到下一篇,那么Prim算法的思想

是什么呢?很简单,贪心思想。

如上图:现有集合M={A,B,C,D,E,F},再设集合N={}。

第一步:挑选任意节点(比如A),将其加入到N集合,同时剔除M集合的A。

第二步:寻找A节点权值最小的邻节点(比如F),然后将F加入到N集合,此时N={A,F},同时剔除M集合中的F。

第三步:寻找{A,F}中的权值最小的邻节点(比如E),然后将E加入到N集合,此时N={A,F,E},同时剔除M集合的E。

。。。

最后M集合为{}时,生成树就构建完毕了,是不是非常的简单,这种贪心做法我想大家都能想得到,如果算法配合一个好的数据结构,就会

如虎添翼。

三:代码

1. 图的存储

图的存储有很多方式,邻接矩阵,邻接表,十字链表等等,当然都有自己的适合场景,下面用邻接矩阵来玩玩,邻接矩阵需要采用两个数组,

①. 保存顶点信息的一维数组,

②. 保存边信息的二维数组。

1 public class Graph
2         {
3             /// <summary>
4             /// 顶点个数
5             /// </summary>
6             public char[] vertexs;
7
8             /// <summary>
9             /// 边的条数
10             /// </summary>
11             public int[,] edges;
12
13             /// <summary>
14             /// 顶点个数
15             /// </summary>
16             public int vertexsNum;
17
18             /// <summary>
19             /// 边的个数
20             /// </summary>
21             public int edgesNum;
22         }


2:矩阵构建

矩阵构建很简单,这里把上图中的顶点和权的信息保存在矩阵中。

1 #region 矩阵的构建
2         /// <summary>
3         /// 矩阵的构建
4         /// </summary>
5         public void Build()
6         {
7             //顶点数
8             graph.vertexsNum = 6;
9
10             //边数
11             graph.edgesNum = 8;
12
13             graph.vertexs = new char[graph.vertexsNum];
14
15             graph.edges = new int[graph.vertexsNum, graph.vertexsNum];
16
17             //构建二维数组
18             for (int i = 0; i < graph.vertexsNum; i++)
19             {
20                 //顶点
21                 graph.vertexs[i] = (char)(i + 65);
22
23                 for (int j = 0; j < graph.vertexsNum; j++)
24                 {
25                     graph.edges[i, j] = int.MaxValue;
26                 }
27             }
28
29             graph.edges[0, 1] = graph.edges[1, 0] = 80;
30             graph.edges[0, 3] = graph.edges[3, 0] = 100;
31             graph.edges[0, 5] = graph.edges[5, 0] = 20;
32             graph.edges[1, 2] = graph.edges[2, 1] = 90;
33             graph.edges[2, 5] = graph.edges[5, 2] = 70;
34             graph.edges[3, 2] = graph.edges[2, 3] = 100;
35             graph.edges[4, 5] = graph.edges[5, 4] = 40;
36             graph.edges[3, 4] = graph.edges[4, 3] = 60;
37             graph.edges[2, 3] = graph.edges[3, 2] = 10;
38         }
39         #endregion


3:Prim

要玩Prim,我们需要两个字典。

①:保存当前节点的字典,其中包含该节点的起始边和终边以及权值,用weight=-1来记录当前节点已经访问过,用weight=int.MaxValue表示

两节点没有边。

②:输出节点的字典,存放的就是我们的N集合。

当然这个复杂度玩高了,为O(N2),寻找N集合的邻边最小权值时,我们可以玩玩AVL或者优先队列来降低复杂度。

1 #region prim算法
2         /// <summary>
3         /// prim算法
4         /// </summary>
5         public Dictionary<char, Edge> Prim()
6         {
7             Dictionary<char, Edge> dic = new Dictionary<char, Edge>();
8
9             //统计结果
10             Dictionary<char, Edge> outputDic = new Dictionary<char, Edge>();
11
12             //weight=MaxValue:标识没有边
13             for (int i = 0; i < graph.vertexsNum; i++)
14             {
15                 //起始边
16                 var startEdge = (char)(i + 65);
17
18                 dic.Add(startEdge, new Edge() { weight = int.MaxValue });
19             }
20
21             //取字符的开始位置
22             var index = 65;
23
24             //取当前要使用的字符
25             var start = (char)(index);
26
27             for (int i = 0; i < graph.vertexsNum; i++)
28             {
29                 //标记开始边已使用过
30                 dic[start].weight = -1;
31
32                 for (int j = 1; j < graph.vertexsNum; j++)
33                 {
34                     //获取当前 c 的 邻边
35                     var end = (char)(j + index);
36
37                     //取当前字符的权重
38                     var weight = graph.edges[(int)(start) - index, j];
39
40                     if (weight < dic[end].weight)
41                     {
42                         dic[end] = new Edge()
43                         {
44                             weight = weight,
45                             startEdge = start,
46                             endEdge = end
47                         };
48                     }
49                 }
50
51                 var min = int.MaxValue;
52
53                 char minkey = ' ';
54
55                 foreach (var key in dic.Keys)
56                 {
57                     //取当前 最小的 key(使用过的除外)
58                     if (min > dic[key].weight && dic[key].weight != -1)
59                     {
60                         min = dic[key].weight;
61                         minkey = key;
62                     }
63                 }
64
65                 start = minkey;
66
67                 //边为顶点减去1
68                 if (outputDic.Count < graph.vertexsNum - 1 && !outputDic.ContainsKey(minkey))
69                 {
70                     outputDic.Add(minkey, new Edge()
71                     {
72                         weight = dic[minkey].weight,
73                         startEdge = dic[minkey].startEdge,
74                         endEdge = dic[minkey].endEdge
75                     });
76                 }
77             }
78             return outputDic;
79         }
80         #endregion


4:最后我们来测试一下,看看找出的最小生成树。

1     public static void Main()
2         {
3             MatrixGraph martix = new MatrixGraph();
4
5             martix.Build();
6
7             var dic = martix.Prim();
8
9             Console.WriteLine("最小生成树为:");
10
11             foreach (var key in dic.Keys)
12             {
13                 Console.WriteLine("({0},{1})({2})", dic[key].startEdge, dic[key].endEdge, dic[key].weight);
14             }
15
16             Console.Read();
17         }


内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: