您的位置:首页 > 运维架构 > Linux

Linux-2.6.20的cs8900驱动分析(二)

2015-07-15 16:27 615 查看
本博客转载于:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=17008081&id=2838249

二、net_open、net_close和net_interrupt
2.1 net_open与net_close
net_open函数主要完成的工作有:(这段net_open函数的概要内容总结来源于网络,网址:http://www.akae.cn/bbs/archiver/?tid-6657.html)
A.获取私有数据指针存放于lp
B.启动设备总线控制功能和启动存储器
C.调用request_irq()请求中断并注册net_interrupt为中断服务程序;
D.写中断号存于设备中write_irq()
E.如果无法申请中断号,则返回错误
F.如果支持DMA则通过以下函数初始化DMA:
_get_dma_pages();
get_order();
dma_page_eq();
G.申请DMA,requeset_dma()
H.初始化设备结构中关于DMA的参数,并使能DMA;
I.设置以太网地址,writereg()
J.检测链路,从而确定连接媒体类型
K.配置链路:
a.10B_T:detect_tp()
b.AUI:detect_aui()
c.10B_2:detect_bnu()
d.AUTO:从头检测自动配置
L.输出信息
M.启动链路串行接收和发送功能
N.初始化lp相关参数
O.配置DMA,set_dma_cfg()
P.配置芯片相关寄存器
Q.配置DMA缓冲dma_bufcfg()
R.使能芯片中断;
S.启动网络传输队列,netif_start_queue()
这部分内容都与cs8900芯片具体操作相关,相对来说和比较简单,下面直接给出net_open与net_close的相关注解
static int net_open(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
int result = 0;
int i;
int ret;

......//省略一些信息
/* FIXME: Cirrus' release had this: */
writereg(dev, PP_BusCTL, readreg(dev, PP_BusCTL)|ENABLE_IRQ ); //使能cs8900中断

write_irq(dev, lp->chip_type, dev->irq); //该函数选择cs8900芯片内部的中断线,
//见本文件中的write_irq实现
//++++++++++++++++++++++这段代码为自己添加,内核原版中没有
#if defined(CONFIG_ARCH_S3C2410)
set_irq_type(dev->irq, IRQT_RISING); //该函数在kernel\irq\chip实现,
//可选择的中断类型有include\linux\interrupt.h中定义,此处设置为上升沿触发中断
#endif
//++++++++++++++++++++++
ret = request_irq(dev->irq, &net_interrupt, 0, dev->name, dev); //注册中断
if (ret) {
if (net_debug)
printk(KERN_DEBUG "cs89x0: request_irq(%d) failed\n", dev->irq);
goto bad_out;
}
……

/* set the Ethernet address *///将MAC地址设置到cs8900的Individual
Address寄存器
for (i=0; i < ETH_ALEN/2; i++)
writereg(dev, PP_IA+i*2, dev->dev_addr[i*2] | (dev->dev_addr[i*2+1] << 8));

/* while we're testing the interface, leave interrupts disabled */
writereg(dev, PP_BusCTL, MEMORY_ON); //使cd8900工作到memory模式,
//如果dev->mem_start域为0,
//将关闭该模式


//以下代码为选择cs8900的物理传输媒体的类型
/* Set the LineCTL quintuplet based on adapter configuration read from EEPROM */
//由于没有eeprom,lp->adapter_cnf在cs89x0_probe1中未设置,此值为0.
if ((lp->adapter_cnf & A_CNF_EXTND_10B_2) && (lp->adapter_cnf & A_CNF_LOW_RX_SQUELCH))
lp->linectl = LOW_RX_SQUELCH;
else
lp->linectl = 0;

/* check to make sure that they have the "right" hardware available */
switch(lp->adapter_cnf & A_CNF_MEDIA_TYPE) {
case A_CNF_MEDIA_10B_T: result = lp->adapter_cnf & A_CNF_10B_T; break;
case A_CNF_MEDIA_AUI: result = lp->adapter_cnf & A_CNF_AUI; break;
case A_CNF_MEDIA_10B_2: result = lp->adapter_cnf & A_CNF_10B_2; break;
default: result = lp->adapter_cnf & (A_CNF_10B_T | A_CNF_AUI | A_CNF_10B_2);
}

#if defined(CONFIG_ARCH_PNX0105) || defined(CONFIG_ARCH_S3C2410)//+++++++++
result = A_CNF_10B_T; //上面由于lp->adapter_cnf=0,导致result=0,
//这里额外设置该值可以根据需要实际情况设置,可设置的值可在
//cs89x0.h中找到当然这里也可以设置lp->adapter_cnf成想要的值
#endif
if (!result) {//result==0时执行此段代码
printk(KERN_ERR "%s: EEPROM is configured for unavailable media\n", dev->name);
release_irq:
......
writereg(dev, PP_LineCTL, readreg(dev, PP_LineCTL) & ~(SERIAL_TX_ON | SERIAL_RX_ON));
free_irq(dev->irq, dev);
ret = -EAGAIN;
goto bad_out;
}

/* set the hardware to the configured choice */
switch(lp->adapter_cnf & A_CNF_MEDIA_TYPE) {//lp->adapter_cnf & A_CNF_MEDIA_TYPE==0,
//不符合任何case情况,将执行default,但未实现default
case A_CNF_MEDIA_10B_T:
result = detect_tp(dev); //detect_tp探测物理传输媒体类型是RJ-45H,
//还是RJ-45F
if (result==DETECTED_NONE) {
printk(KERN_WARNING "%s: 10Base-T (RJ-45) has no cable\n", dev->name);
if (lp->auto_neg_cnf & IMM_BIT) /* check "ignore missing media" bit */
result = DETECTED_RJ45H; /* Yes! I don't care if I see a link pulse */
}
break;
case A_CNF_MEDIA_AUI:
result = detect_aui(dev);//detect_tp探测物理传输媒体类型是否为AUI型
if (result==DETECTED_NONE) {
printk(KERN_WARNING "%s: 10Base-5 (AUI) has no cable\n", dev->name);
if (lp->auto_neg_cnf & IMM_BIT) /* check "ignore missing media" bit */
result = DETECTED_AUI; /* Yes! I don't care if I see a carrrier */
}
break;
case A_CNF_MEDIA_10B_2:
result = detect_bnc(dev); //detect_tp探测物理传输媒体类型是否为BNC型
if (result==DETECTED_NONE) {
printk(KERN_WARNING "%s: 10Base-2 (BNC) has no cable\n", dev->name);
if (lp->auto_neg_cnf & IMM_BIT) /* check "ignore missing media" bit */
result = DETECTED_BNC; /* Yes! I don't care if I can xmit a packet */
}
break;
case A_CNF_MEDIA_AUTO:
writereg(dev, PP_LineCTL, lp->linectl | AUTO_AUI_10BASET);
if (lp->adapter_cnf & A_CNF_10B_T)
if ((result = detect_tp(dev)) != DETECTED_NONE)
break;
if (lp->adapter_cnf & A_CNF_AUI)
if ((result = detect_aui(dev)) != DETECTED_NONE)
break;
if (lp->adapter_cnf & A_CNF_10B_2)
if ((result = detect_bnc(dev)) != DETECTED_NONE)
break;
printk(KERN_ERR "%s: no media detected\n", dev->name);
goto release_irq;
}
switch(result) { //上面将result赋成了A_CNF_10B_T,该值为1,刚好等于
//DETECTED_RJ45H所以也可以在上面的result中直接赋成
//DETECTED_RJ45H或者其他类型的接口
case DETECTED_NONE:
printk(KERN_ERR "%s: no network cable attached to configured media\n", dev->name);
goto release_irq;
case DETECTED_RJ45H:
printk(KERN_INFO "%s: using half-duplex 10Base-T (RJ-45)\n", dev->name);
break;
case DETECTED_RJ45F:
printk(KERN_INFO "%s: using full-duplex 10Base-T (RJ-45)\n", dev->name);
break;
case DETECTED_AUI:
printk(KERN_INFO "%s: using 10Base-5 (AUI)\n", dev->name);
break;
case DETECTED_BNC:
printk(KERN_INFO "%s: using 10Base-2 (BNC)\n", dev->name);
break;
}

/* Turn on both receive and transmit operations */
writereg(dev, PP_LineCTL, readreg(dev, PP_LineCTL) | SERIAL_RX_ON | SERIAL_TX_ON);

/* Receive only error free packets addressed to this card */
lp->rx_mode = 0;//确定接收模式,0表示接收广播, 非0表示全部接收
writereg(dev, PP_RxCTL, DEF_RX_ACCEPT); //初始化接收控制器RxCTL为默认
//接收模式。该模式下,只接收Broadcast和Individual的CRC
//正确的数据包,具体可查看cs8900手册。

lp->curr_rx_cfg = RX_OK_ENBL | RX_CRC_ERROR_ENBL; //接收OK产生中断,
//CRC错产生中断

if (lp->isa_config & STREAM_TRANSFER)//判断是否打开cs8900的stream传输模式
lp->curr_rx_cfg |= RX_STREAM_ENBL;//使用stream模式,此处没有启用。

writereg(dev, PP_RxCFG, lp->curr_rx_cfg); //初始化接收配置控制器RxCFG,
//这里确定了接收中断源

//初始化发送配置控制器TxCFG,TxCFG寄存器的全部有效位置为1,
//也确定了发送中断源
writereg(dev, PP_TxCFG, TX_LOST_CRS_ENBL | TX_SQE_ERROR_ENBL | TX_OK_ENBL |
TX_LATE_COL_ENBL | TX_JBR_ENBL | TX_ANY_COL_ENBL | TX_16_COL_ENBL);

writereg(dev, PP_BufCFG, READY_FOR_TX_ENBL | RX_MISS_COUNT_OVRFLOW_ENBL |

TX_COL_COUNT_OVRFLOW_ENBL | TX_UNDERRUN_ENBL);

/* now that we've got our act together, enable everything */
writereg(dev, PP_BusCTL, ENABLE_IRQ //开中断
| (dev->mem_start?MEMORY_ON : 0) //没有设置共享内存空
//间dev->mem_start为0,memory模式将被关闭

);
netif_start_queue(dev); //激活设备发送队列,以便内核可以开始发送数据
if (net_debug > 1)
printk("cs89x0: net_open() succeeded\n");
return 0;
bad_out:
return ret;
}


net_close(struct net_device *dev)
{
......//略去DMA部分

netif_stop_queue(dev);//停止设备发送队列,通知内核不能使用该设备发送数据

writereg(dev, PP_RxCFG, 0);//禁用接收
writereg(dev, PP_TxCFG, 0);//禁用发送
writereg(dev, PP_BufCFG, 0);//关闭cs8900内部缓冲区
writereg(dev, PP_BusCTL, 0);//停止总线

free_irq(dev->irq, dev);//释放占用的中断线

......//略去DMA部分

/* Update the statistics here. */
return 0;
}
2.2 net_interrupt
该函数的大体流程如下:(此段总结来源同上)
A.获取设备私有数据net_priv();
B.读取CS8900的中断端口状态readword();
C.判断中断类型:
a.接收事件:调用net_rx()接收数据;
b.传输事件:调用netif_wake_queue()唤醒传输队列,进行异常处理;
c.缓冲区事件:可以发送数据,调用netif_wake_queue()唤醒传输队列;
d.接收包丢失事件:初始化相关error,错误计数
e.传输冲突时间:初始化相关error
D.返回中断句柄。
net_interrupt中断处理函数的实现非常简单,它首先读出cs8900的ISQ寄存器的值,然后根据ISQ的值分别处理各种情况。当中断发生时,这些中断实际反映在相应的寄存器中,ISQ寄存器用低6位记录了当前寄存器的编号,高10位记录了当前寄存器的实际内容。这些寄存器有:RxEvent(Register
4),TxEvent(Register 8),BufEvent(RegisterC),RxMISS(Register 10) 和 TxCOL(Register
12)。比如,传输成功后,cs8900将TxEvent的第0bit置为1,如果允许该事件中断,那么ISQ寄存器的低6位将记录TxEvent的编号8,并且将TxEvent寄存器的高10位copy到它的高10位中。
net_interrupt注解如下:

static irqreturn_t net_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct net_local *lp;
int ioaddr, status;
int handled = 0;

ioaddr = dev->base_addr;
lp = netdev_priv(dev);

/* we MUST read all the events out of the ISQ, otherwise we'll never
get interrupted again. As a consequence, we can't have any limit
on the number of times we loop in the interrupt handler. The
hardware guarantees that eventually we'll run out of events. Of
course, if you're on a slow machine, and packets are arriving
faster than you can read them off, you're screwed. Hasta la
vista, baby! */
while ((status = readword(dev->base_addr, ISQ_PORT))) {
//ISQ_PORT=08h,根据cs8900的用户手册,这里再次说明了cs8900工作在I/O模式
if (net_debug > 4)printk("%s: event=%04x\n", dev->name, status);
handled = 1;
switch(status & ISQ_EVENT_MASK) { //ISQ_EVENT_MASK=0x3f,
//确定ISQ的低6位,该6位纪录了发生中断的寄存器
case ISQ_RECEIVER_EVENT: //ISQ_RECEIVER_EVENT=0x04,
//中断源来自RxEvent,表示接收到了数据包
/* Got a packet(s). */
net_rx(dev);
break;
case ISQ_TRANSMITTER_EVENT: //ISQ_RECEIVER_EVENT=0x08,
//中断源来自TxEvent,根据 net_open中设置,有很多发送事件
//可以产生中断,需要分别处理
lp->stats.tx_packets++; //累加发送包的总数
netif_wake_queue(dev); /* Inform upper layers. */
if ((status & ( TX_OK | //ISQ的高10位描述了TxEvent的实际内容,
//也即实际传输的信息这里似乎status应该右移6位?的确应该
//这样,这里之所以没这样做,是因为TX_OK等这些值,在设
//计时已经左移了6位
TX_LOST_CRS |
TX_SQE_ERROR |
TX_LATE_COL |
TX_16_COL)) != TX_OK) { //做些错误统计工作
if ((status & TX_OK) == 0) lp->stats.tx_errors++;
if (status & TX_LOST_CRS) lp->stats.tx_carrier_errors++;
if (status & TX_SQE_ERROR) lp->stats.tx_heartbeat_errors++;
if (status & TX_LATE_COL) lp->stats.tx_window_errors++;
if (status & TX_16_COL) lp->stats.tx_aborted_errors++;
}
break;
case ISQ_BUFFER_EVENT: //ISQ_RECEIVER_EVENT=0x0c,
//中断源来自BufEvent
if (status & TX_UNDERRUN) { //这里说明估计的发送长度过短,可能需要做调整
if (net_debug > 0) printk("%s: transmit underrun\n", dev->name);
lp->send_underrun++;
if (lp->send_underrun == 3) lp->send_cmd = TX_AFTER_381; //此值cs89x0_probe1时初始化为5,这里修正。
else if (lp->send_underrun == 6) lp->send_cmd = TX_AFTER_ALL;
/* transmit cycle is done, although
frame wasn't transmitted - this
avoids having to wait for the upper
layers to timeout on us, in the
event of a tx underrun */
netif_wake_queue(dev); /* Inform upper layers. */
}
......//DMA部分
break;
case ISQ_RX_MISS_EVENT: //ISQ_RX_MISS_EVENT=0x10,
//中断来自于RxMISS,该寄存器的高10位记录丢失的数据包
lp->stats.rx_missed_errors += (status >>6);
break;
case ISQ_TX_COL_EVENT: //ISQ_TX_COL_EVENT=0x12,中断来自于
//TxCOL,该寄存器的高10位记录发了生冲突的数据包
lp->stats.collisions += (status >>6);
break;
}
}
return IRQ_RETVAL(handled);
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: