您的位置:首页 > 移动开发 > Android开发

从Handler+Message+Looper源码带你分析Android系统的消息处理机制

2015-07-13 10:19 459 查看
PS一句:不得不说CSDN同步做的很烂,还得我花了近1个小时恢复这篇博客。

引言

【转载请注明出处:http://blog.csdn.net/feiduclear_up CSDN 废墟的树】

作为Android开发者,相信很多人都使用过Android的Handler类来处理异步任务。那么Handler类是怎么构成一个异步任务处理机制的呢?这篇

博客带你从源码分析Android的消息循环处理机制,便于深入的理解。

这里不得不从“一个Bug引发的思考”开始研究Android的消息循环处理机制。说来话长,在某一次的项目中,原本打算开启一个工作线程

WorkThread去执行一个耗时任务,然后在工作线程WorkThread中new一个Handler对象来发送消息。代码简化成如下:

private class WorkThread extends Thread {
private Handler mHandler;

@Override
public void run() {

mHandler = new Handler() {
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case 0:
Log.e(TAG, 任务执行完成);
break;
}
}
};

//模拟一个耗时任务
try {
sleep(9000);
} catch (InterruptedException e) {
e.printStackTrace();
}

//任务执行完成之后发送一个消息
int what = 0;
mHandler.sendEmptyMessage(what);
}
}


当以上代码执行之后,很不幸的出现了如下的一个Bug:



Log打印日志提示:不能在线程中没有调用 Looper.prepare()方法之前就去创建handler对象,言外之意就是,在线程中还没调Looper.prepare()

方法之前,你是不能去创建Handler对象的,否则抛出错误异常。为什么会这样呢?带着疑问,我们跟踪代码进入到Handler源码中的构造方法:

public Handler(Callback callback, boolean async) {
.............

mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
Can't create handler inside thread that has not called Looper.prepare());
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}


代码第5-8行:我们发现当成员变量mLooper为空值时,就会抛出上面的异常了,意思就是刚才在WorkThread中创建Handler的时候mLooper是

空的,难道不可以这样创建Handler消息处理机制?那为什么在UI线程中直接new一个Hanlder对象不会出错呢?带着这种好奇心,我们今天来分

析一下Android系统消息处理机制有关的 Handler,Message,Looper,Thread类之间的关联。

Handler:消息的执行者,也可以称之为异步任务的执行者

Message:消息的封装者,把异步任务,消息码Handler对象等封装成Message对象

MessageQueue:消息队列,用于保存当前线程的所有消息Message对象的一个列表

Looper:循环者,能让工作线程变成循环线程,然后从消息队列中循环读取消息

Thread:异步任务或者耗时任务执行场所,一般开启一个新的工作线程处理耗时任务

消息的执行者–Handler

在Android的消息处理机制中,Handler扮演者重要的角色。Handler负责如下几个工作:

消息的发送 消息的入列 消息的调度/消息的分发 消息的处理

1-1消息的发送

对于消息的发送,相信很多人平时用的最多的是Handler.sendEmptyMessage(),那么利用Handler发送的消息最终会发送到哪里呢?骚年不用YY了,源码会告诉你答案,我们跟踪Handler类中的sendEmptyMessage方法:

/**
* Sends a Message containing only the what value.
*
* @return Returns true if the message was successfully placed in to the
*         message queue.  Returns false on failure, usually because the
*         looper processing the message queue is exiting.
*/
public final boolean sendEmptyMessage(int what)
{
return sendEmptyMessageDelayed(what, 0);
}

/**
* Sends a Message containing only the what value, to be delivered
* after the specified amount of time elapses.
* @see #sendMessageDelayed(android.os.Message, long)
*
* @return Returns true if the message was successfully placed in to the
*         message queue.  Returns false on failure, usually because the
*         looper processing the message queue is exiting.
*/
public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageDelayed(msg, delayMillis);
}

public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this +  sendMessageAtTime() called with no mQueue);
Log.w(Looper, e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}


有以上代码发现,Handler消息的发送最终都会调用sendMessageAtTime成员方法。该方法首先判断当前Handler的成员变量mQueue是否为空,如果为空,则打印一个警告,并且返回false,表

示该消息发送失败。那么成员变量mQueue是神马东西呢?mQueue是MessageQueue对象,而MessageQueue类是一个消息队列,被Looper

对象持有。关于MessageQueue消息队列相关内容后面会展开分析。继续分析代码,如果消息队列不为空,则会调用enqueueMessage方法,跟踪代码进入该方法:

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}


首先,将当前类Handler对象赋值给消息Message类中的target成员变量。然后调用消息队列MessageQueue类中的enqueueMessage方法将

该消息msg插入到消息队列中。这个过程称之为消息入列的一个过程。

1-2消息的入列

有1-1节可知,消息的入列是调用MessageQueue消息队列类中的enqueueMessage成员方法实现的,跟踪代码看看消息入列的具体实现

boolean enqueueMessage(Message msg, long when) {
//判断消息的目标对象是否为空
if (msg.target == null) {
throw new IllegalArgumentException(Message must have a target.);
}
//判断消息是否正在使用
if (msg.isInUse()) {
throw new IllegalStateException(msg +  This message is already in use.);
}

synchronized (this) {
//判断是否正在清除消息队列
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target +  sending message to a Handler on a dead thread);
Log.w(MessageQueue, e.getMessage(), e);
msg.recycle();
return false;
}
//标记消息正在使用
msg.markInUse();
//对消息的延时处理时间幅值
msg.when = when;
//保存消息队列中的延时时间最小的那个消息
Message p = mMessages;
boolean needWake;
//条件判断,消息入列,将延时时间最小的那个消息赋值给mEssages变量
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue.  Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
//循环遍历消息队列,将当前消息按照延时时间插入到消息队列中
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}

// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}


分析:

1.代码第3行:判断当前入列的消息的目标处理对象是否为空,有1-1节我们知道msg.target的值是一个Handler实例。换言之,如果消息的目标处

理对象Handler为null,那么该消息就没有Handler去处理它,因此此处抛出一个异常

2.代码第7行:判断当前Message是否正在使用?如果是则抛出异常。说明一个相同的消息不可能同时存在同一个MessageQueue消息队列中。

3.代码第13行:判断当前消息队列是否正在退出?如果正在退出,则抛出异常,说明当前Message消息无法入列,因为MessageQueue消息队列退出了。

4.代码第27-52行:Message消息按照延时时间大小插入当前MessageQueue消息队列中,最终延时时间最短的消息在队列的最前面。

总结:到此,我们知道Handler将消息发送到消息队列MessageQueue中去了。那么这个消息队列MessageQueue是从哪里来

的呢?它属于谁呢?这里直接给出答案,MessageQueue消息队列是在Looper类中创建,Looper循环则持有当前线程中的消息队列

MessageQueue。至于为什么是这样,后面给出详细解释。

1-3消息的调度/消息的分发

有1-2小节我们知道,消息的执行者Handler将消息Message发送到消息队列MessageQueue中,并且消息队列中的所有消息都是按照时间排列。

那么在消息队列MessageQueue中的消息又是怎么分发出去的,或者说消息队列中的消息是怎么被消费掉的?现在我们来解答1-2小节中的最后一个问题,消息队列MessageQueue从哪里来?属于谁?在文章的一开头,

我们有“一个Bug引发的思考”知道了在线程中创建Handler对象之前需要调用Looper.prepare(),否则会抛出异常。那么我们就来分析一下Looper这个类:

/**
* Class used to run a message loop for a thread.  Threads by default do
* not have a message loop associated with them; to create one, call
* {@link #prepare} in the thread that is to run the loop, and then
* {@link #loop} to have it process messages until the loop is stopped.
*
* </code>
Most interaction with a message loop is through the * {@link Handler} class. * *

This is a typical example of the implementation of a Looper thread, * using the separation of {@link #prepare} and {@link #loop} to create an * initial Handler to communicate with the Looper. * *

*  class LooperThread extends Thread {
*      public Handler mHandler;
*
*      public void run() {
*          Looper.prepare();
*
*          mHandler = new Handler() {
*              public void handleMessage(Message msg) {
*                  // process incoming messages here
*              }
*          };
*
*          Looper.loop();
*      }
*  }
*/


分析:源码开头给出了一个很长的说明,大意是:Looper类作用是为一个线程构造消息循环的,因为线程Thread默认是不带消息循环的。因此

你可以调用Looper类中的prepare方法去为构造一个带消息循环的线程,并且调用Looper.loop()方法启动循环去循环处理消息,直到loop循环结

束。并且Google官方还提供了一个标准的构造一个带消息循环的线程实例,代码如下:

class LooperThread extends Thread {
public Handler mHandler;
public void run() {
Looper.prepare();
mHandler = new Handler() {
public void handleMessage(Message msg) {
// process incoming messages here
}
};
Looper.loop();
}
}


以上代码就是创建带消息循环的线程标准写法。那么我们来看看Looper.prepare()方法做了什么:

public final class Looper {
private static final String TAG = Looper;

// sThreadLocal.get() will return null unless you've called prepare().
static final ThreadLocal<looper> sThreadLocal = new ThreadLocal<looper>();
private static Looper sMainLooper;  // guarded by Looper.class

final MessageQueue mQueue;
final Thread mThread;

private Printer mLogging;

/** Initialize the current thread as a looper.
* This gives you a chance to create handlers that then reference
* this looper, before actually starting the loop. Be sure to call
* {@link #loop()} after calling this method, and end it by calling
* {@link #quit()}.
*/
public static void prepare() {
prepare(true);
}

private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException(Only one Looper may be created per thread);
}
sThreadLocal.set(new Looper(quitAllowed));
}
}


分析:

1.代码第24行:调用sThreadLocal.get()获得存储在本地线程中的Looper值,如果本地线程ThreadLocal中有当前的Looper对象,者会抛出一个异

常:”Only one Looper may be created per thread”每一个线程只能有一个Looper对象。所以每一个线程只能拥有一个Looper对象,关于ThreadLocal类,这里不展开学习,主要作用是将Looper对象存储在本地线程ThreadLocal中。

2.代码第27行:将当前的Looper对象保存在本地线程对象ThreadLocal中。至此,Looper的准备工作就完成了。

Looper的准备工作完成之后,我们来看看Looper的启动方法Looper.loop(),进入loop()方法代码如下:

/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException(No Looper; Looper.prepare() wasn't called on this thread.);
}
final MessageQueue queue = me.mQueue;

// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();

for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}

// This must be in a local variable, in case a UI event sets the logger
Printer logging = me.mLogging;
if (logging != null) {
logging.println(>>>>> Dispatching to  + msg.target +   +
msg.callback + :  + msg.what);
}

msg.target.dispatchMessage(msg);

if (logging != null) {
logging.println(<<<<< Finished to  + msg.target +   + msg.callback);
}

// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, Thread identity changed from 0x
+ Long.toHexString(ident) +  to 0x
+ Long.toHexString(newIdent) +  while dispatching to
+ msg.target.getClass().getName() +
+ msg.callback +  what= + msg.what);
}

msg.recycleUnchecked();
}
}


分析:注释开头就描述了,该方法的作用是为了在线程中构建一个消息循环机制,当然你可以调用Looper类中的quit()成员方法结束当前loop循环。

代码第10行:获得当前线程Thread的消息队列并且赋值给本地变量queue。

代码第17-49行:构建一个死循环来遍历当前Looper中的消息队列。

代码第18-22行:每次遍历都获取消息队列中最前端的消息,也就是延时时间最短的消息。当从消息队列中获取的消息为空,则说明该消息队列已经退出。

代码第31行:这一行是重点,此处调用了当前消息的目标对象去分发消息。有1-1小节的最后一段我们知道,消息队列的目标对象就是Handler对象,因此这里就是调用Handler去调度消息或者叫分发消息。有此处也看出来,Message消息是有哪个Handler发送的,就有哪个Handler去分发消息。

跟踪代码进入

msg.target.dispatchMessage(msg);


以上方法在Handler类中

/**
* Handle system messages here.
*/
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}


该方法就是处理系统消息的地方,以上代码有三个分支,我们先看最后一个分支,就是执行handleMessage(msg);方法,跟踪代码:

/**
* Subclasses must implement this to receive messages.
*/
public void handleMessage(Message msg) {
}


我擦,这么简单,就一个空方法?那怎么处理消息呢?注释已经告诉我们了,Handler的子类必须重写该方法用来接收消息,也就是说最后的消息

处理逻辑是延伸给Handler类的之类了。相信读者对该方法应该不陌生吧,就是我们经常在实现Handler类中重写的那个方法,消息的处理就在这个方法里面实现了。

到此,消息的调用/消息的分发就结束了,最后通过一个空方法将消息的处理逻辑留给了Handler的之类。

1-4消息的处理

消息有以上三步操作,最后进入消息的处理阶段,这里就到了我们非常熟悉的地方了,消息的处理是留给我们Handler子类去实现的,也就是我们平时编写Handler消息那样:

public Handler mHandler;
mHandler = new Handler() {
public void handleMessage(Message msg) {
// process incoming messages here
}
};


Handler消息执行过程总结:

下面用一张图来描述消息的发送,消息的入列,消息的分发,消息的处理四个过程。



有线程中的Handler把Message类封装的消息发送到当前线程的Looper对象中的消息队列MessageQueue中,然后Looper遍历循环消息队列MessageQueue,从消息队列中取出消息,通过target Handler将消息分发出去,最后当前线程中的Handler获取到该消息,并对消息进行处理。

Handler有关的构造方法

分析Handler类源码发现,Handller类有很多个构造方法。爱思考的你肯定会问,这些构造方法有什么不同呢?那么我们就从代码中来分析他们之间的不同吧:

2-1 不带参的构造方法

private Handler mHandler = new Handler() {
@Override
public void handleMessage(Message msg) {
//接收消息之后,处理消息
}
};


我们一般在UI线程中这么来实例化一个Handler对象,然后通过重写Handler类中的handleMessage(Message msg)方法来处理消息。

2-2带一个参数Callback的构造方法

private Handler handler1 = new Handler(new Handler.Callback() {
@Override
public boolean handleMessage(Message msg) {
//接收消息之后,处理消息
return true;
}
});


此处的Callback参数是Handler类的内部回调接口,我们通过实现Callback接口中的handleMessage(Message msg)方法来处理消息。

2-3带两个参数的构造方法

private Handler handler2 = new Handler(Looper.myLooper(), new Handler.Callback() {
@Override
public boolean handleMessage(Message msg) {
//TODO 接收消息之后,处理消息
return true;
}
});


第一个参数是当前线程的Looper对象,第二个参数是Callback接口,消息的处理和2-2小节一样,唯一不同的地方就是多了一个Looper参数。

总结

由1-3小节我们发现,Handler类中的dispatchMessage方法分发消息有几种情况:

/**
* Handle system messages here.
*/
public void dispatchMessage(Message msg) {
//第一种处理消息方式
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
//第二种处理消息方式
if (mCallback.handleMessage(msg)) {
return;
}
}
//第三种处理消息方式
handleMessage(msg);
}
}


1.而当你使用2-1小节的构造方法创建Handler对象时,就是采用上面代码中的第三种处理消息的方式了,即重写Handler类中的handleMessage(msg)方法。

2.当你使用2-2和2-3小节的构造方法创建Handler对象时,就采用上面代码中的第二中处理消息的方式,即实现Handler类中的Callback接口中的

handleMessage(msg)方法。值得注意的是,如果Callback接口回调处理消息返回值是false的话,此消息还会调用第三种处理消息方式,因此没有特殊需求,我们一般在实现Callback接口回调方法时都返回true。

3.那么上面代码第一种处理消息的方式handleCallback(msg)是什么时候触发的呢?上面代码加了一个if条件判断,只有当msg消息中的成员变量

callback不为空时才调用该方式处理消息。那什么时候callback不为空呢?带着这个问题继续分析Handler发送消息的方法。

Handler发送消息的方法

handler发送消息的方法有多达11种,一听吓一跳,这么多方法怎么区分?不用怕,我把这些方法分为如下两类。

send系列

post系列

3-1 send系列

private Handler mHandler = new Handler() {
@Override
public void handleMessage(Message msg) {
//接收消息之后,处理消息
}
};

Message msg = mHandler.obtainMessage();

//发送一个消息码为0的空消息
mHandler.sendEmptyMessage(0);
//发送一个消息码为0,绝对时间点为1000ms的空消息,该时间应该大于等于当前时间,下同
mHandler.sendEmptyMessageAtTime(0, 1000);
//发送一个消息码为0,延时时间为1000ms的空消息
mHandler.sendEmptyMessageDelayed(0, 1000);
//发送一个没有延时的msg封装的消息
mHandler.sendMessage(msg);
//发送一个绝对时间点为1000ms的msg封装的消息
mHandler.sendMessageAtTime(msg, 1000);
//发送一个延时时间为1000ms的msg封装的消息
mHandler.sendMessageDelayed(msg, 1000);
//立即发送一个msg封装的消息到消息队列的最前端
mHandler.sendMessageAtFrontOfQueue(msg);


分析源码你会发现,除了最后一个方法,以上所有的方法最后都会调用如下方法:

/**
* Enqueue a message into the message queue after all pending messages
* before the absolute time (in milliseconds) <var>uptimeMillis</var>.
* <b>The time-base is {@link android.os.SystemClock#uptimeMillis}.</b>
* Time spent in deep sleep will add an additional delay to execution.
* You will receive it in {@link #handleMessage}, in the thread attached
* to this handler.
*
* @param uptimeMillis The absolute time at which the message should be
*         delivered, using the
*         {@link android.os.SystemClock#uptimeMillis} time-base.
*
* @return Returns true if the message was successfully placed in to the
*         message queue.  Returns false on failure, usually because the
*         looper processing the message queue is exiting.  Note that a
*         result of true does not mean the message will be processed -- if
*         the looper is quit before the delivery time of the message
*         occurs then the message will be dropped.
*/
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this +  sendMessageAtTime() called with no mQueue);
Log.w(Looper, e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}


分析:以上注释都解释的很清楚,第一个参数就是Message类封装的消息,第二个参数就是消息的更新时间,该时间是绝对时间。

3-2 post系列

mHandler = new Handler();

mHandler.post(new Runnable() {
@Override
public void run() {
//TODO 接收消息之后,处理消息
}
});
mHandler.postAtTime(new Runnable() {
@Override
public void run() {
//TODO 接收消息之后,处理消息
}
}, new Object(), 1000);

mHandler.postDelayed(new Runnable() {
@Override
public void run() {
//TODO 接收消息之后,处理消息
}
}, 1000);

mHandler.postAtFrontOfQueue(new Runnable() {
@Override
public void run() {
//TODO 接收消息之后,处理消息
}
});


分析:和send系列大有不同,此处我们的Handler无需在去重写handlerMessage方法来处理消息了,此处将接口类Runnable作为消息发送,然后实现Runnable接口类中的run方法来处理消息。对于这一点我相信很多初学者会有疑问,这里又没有Message封装消息,怎么将Runnable接口类当作消息发送呢? 一句话,还是跟踪源码看看:

/**
* Causes the Runnable r to be added to the message queue, to be run
* at a specific time given by <var>uptimeMillis</var>.
* <b>The time-base is {@link android.os.SystemClock#uptimeMillis}.</b>
* Time spent in deep sleep will add an additional delay to execution.
* The runnable will be run on the thread to which this handler is attached.
*
* @param r The Runnable that will be executed.
* @param uptimeMillis The absolute time at which the callback should run,
*         using the {@link android.os.SystemClock#uptimeMillis} time-base.
*
* @return Returns true if the Runnable was successfully placed in to the
*         message queue.  Returns false on failure, usually because the
*         looper processing the message queue is exiting.  Note that a
*         result of true does not mean the Runnable will be processed -- if
*         the looper is quit before the delivery time of the message
*         occurs then the message will be dropped.
*
* @see android.os.SystemClock#uptimeMillis
*/
public final boolean postAtTime(Runnable r, Object token, long uptimeMillis)
{
return sendMessageAtTime(getPostMessage(r, token), uptimeMillis);
}


分析:不管post系列调用哪个方法,最终都会调用上面这个方法来发送消息,你会惊奇的发现,原来post系列也是调用send系列的方法发送方法的。只不过此处调用了getPostMessage方法将Runnable对象转换成Message对象而已。跟踪代码进入getPostMessage方法:

private static Message getPostMessage(Runnable r, Object token) {
Message m = Message.obtain();
m.obj = token;
m.callback = r;
return m;
}


看到没?调用此方法,将Runnable对象r赋值给了Message类中的clalback成员变量。现在我们回顾一下2-3小节Handler类中的

dispatchMessage方法处理消息的三种方式,此处将Runnable接口对象赋值之后Message类中的msg.callback就不会为空,因此调用第一种处理消息的方式。

第3节总结:

不管3-1或者3-2小节调用那种方式发送消息,最终都会调用Handler类中的enqueueMessage成员方法,将消息按照消息更新时间顺序插入到消息队列中,这个过程的分析可以参考1-1小节最后一段内容。

在Message消息封装者类中有这么一段注释:

/*While the constructor of Message is public, the best way to get
* one of these is to call {@link #obtain Message.obtain()} or one of the
* {@link Handler#obtainMessage Handler.obtainMessage()} methods, which will pull
* them from a pool of recycled objects
*/


这段话告诉我们,当你需要构造一个Message消息对象的时候,最好的方法是调用Message.obtain()或者Handler.obtainMessage()方法来获得,而不是这样获得:

Message msg1 = new Message();


为什么这样获得Message对象不好?我们跟踪源码瞧瞧不就知道了。

/**
* Return a new Message instance from the global pool. Allows us to
* avoid allocating new objects in many cases.
*/
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
return new Message();
}


这是一个Message类中的静态方法,方法开头解释的很清楚:从全局的消息池中获得一个新的消息示例,避免用户多次创建Message消息实例浪费

内存。只有当全局的消息池中没有可用的消息实例,才去调用new 一个新的Message消息实例。总之,归纳成一句话,调用Message.obtain()或

者Handler.obtainMessage()方法避免多次创建Message实例,这样性能更加优化。

Handler移除消息的方法以及Handler内存泄漏问题

方法包括如下:

//从消息队列中移出post系列方法中Runnable对象的消息
mHandler.removeCallbacks(Runnable r);
//从消息队列中移除消息码为“what”的消息
mHandler.removeMessages(int what);
//从消息队列中移除所有post系列方法和send系列方法发送的消息
mHandler.removeCallbacksAndMessages(Object token);


可能很初学者会有疑问,开发中很少用到以上这些方法。那如果你很少使用以上方法,说明你还是一个Android小白。如果不调用以上相应的方法

去移除消息,就会存在Handler对象内存泄漏的隐患。此话怎讲?我在一次项目开发中遇到这样的问题:

我开启一个新的工作线程WorkThread去执行一段耗时网络请求,当请求结束之后我调用UI线程中的Handler发送一个Message消息给UI线程,但

是此时,我早已经退出当前持有Handler对象的Activity,这会持有Handler的Activity是接收不到WorkThread发送过来的消息的,因为

Activity已经退出,因此会出现一个bug:Handler对象内存泄露。那怎么解决这个Handler内存泄露隐患呢?

4-1

很简单,在持有Handler对象的Activity的onDestory方法调用如下代码去移除消息队列中的所有消息

mHandler.removeCallbacksAndMessages(null);


此方法只要传递一个null空参数就表示移出当前线程中消息队列中所有的消息。有些人可能会说,我并不想清除消息队列,可能还有其他Activity等待接收消息,好办。你可以调用如下相应的方法移除消息队列中相应的消息:

//从消息队列中移出post系列方法中Runnable对象的消息
mHandler.removeCallbacks(Runnable r);
//从消息队列中移除消息码为“what”的消息
mHandler.removeMessages(int what);


4-2

那么我们是否还有其他办法解决Handler内存泄漏问题呢?答案是肯定的:将Handler申明为静态的,因为静态类不持有外部类的引用。

public class SubActivity extends Activity {
static class StaticHandler extends Handler {
WeakReference mActivityReference;

StaticHandler(Activity activity) {
mActivityReference= new WeakReference(activity);
}

@Override
public void handleMessage(Message msg) {
final SubActivity activity = (SubActivity) mActivityReference.get();
if (activity != null) {
activity.textView.setText(测试静态Handler解决内存泄漏问题);
}
}
}
}


UI线程在使用Handler之前不需要Looper.prepare的原因

文章一开头由“一个Bug引发的思考”我们知道,在线程中使用Handler之前需要调用Looper.prepare方法。爱思考的你会很纳闷,那为什么我

们的UI线程在创建Handler对象的时候没有调用Looper.prepare方法呢?此时我们不得不从UI线程是怎么来的说起了。不过这里不展开讨论,直接给出答案,我们创建一个Application的时候,都是由系统的一个ActivityThread类来启动的。跟踪代码进入ActivityThread类:

public final class ActivityThread {
...................

public static void main(String[] args) {
..............
Looper.prepareMainLooper();
..............
}
}


该类中有一个main方法,是不是感觉很熟悉啊?对了,这里就是我们整个Application应用的入口了。在main方法中调用了Looper.prepareMainLooper(),猜测该方法里面就调用了Looper.prepare方法来为线程循环loop准备。跟踪源码:

public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException(The main Looper has already been prepared.);
}
sMainLooper = myLooper();
}
}


果然,里面调用了prepare方法。到此,我们就知道其实在UI线程中系统在ActivityThread类中就帮我们调用了Looper.prepare方法为UI线程loop循环做准备。

HandlerThread帮你创建循环消息处理机制

你可能会遇到这样一种情况,在UI线程中创建一个工作线程WorkThread执行耗时任务。在正常情况下,这个WorkThread执行完任务之后就销毁

了。但是你过了一段时间又有一个耗时任务需要执行,这会你会怎么办?你只能重新去创建一个WorkThread执行耗时任务。但是线程Thread的每

次创建和销毁都是很耗系统资源的,因此在这种情况下,我们的HandlerThread就此诞生了。HandelrThread是继承自Thread实现了,

也就是说HandlerThread是一个线程。只是该线程里面帮你实现了Looper循环机制,从而使得该线程变成带有循环机制的线程。言外之

意:当该线程执行完一个耗时任务之后不会马上被销毁,除了用户主动调用HandlerThread类中的quit成员方法来退出当前loop循环。关于

HandlerTread是怎么使用的?可以参考我的另一篇博客:

http://blog.csdn.net/feiduclear_up/article/details/46840523

总结:

通过以上文章分析,基本了解了Android系统的消息处理机制是怎么一回事,也知道了怎么使用Handler,以及Handler使用的一些陷阱等。来总结一下 Handler,Message,Looper,MessageQueue,Thread之间的关联吧。

如果一个线程Thread想要使用Handler类来发送消息,就必须先调用Looper类中的prepare成员方法来做一些准备工作,然后调用Looper类

中的loop方法启动该线程的循环机制。Handler类把封装成Message类的消息发送到Looper类中的消息队列中,然后Looper类中的loop循环方法

中分发消息,最后将相应的消息对象分发到相应的target handler类中去处理消息。

由此我们知道:一个线程Thread中只能拥有一个Looper对象,且一个Looper对象中只能拥有一个MessageQueue消息队列,但是一个Thread

线程中可以有多个Handler对象,而多个Handler对象共享同一个MessageQueue消息队列。最后提供一个Handler消息处理机制的流程图



【转载请注明出处:http://blog.csdn.net/feiduclear_up CSDN 废墟的树】
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: