您的位置:首页 > 其它

Direct-X学习笔记--三维摄像机

2015-07-11 16:19 761 查看

一.介绍

哇!到了传说中的3D摄像机啦!

之前我们写的东东,都是观察点不动,通过世界变换让东西动,今天,通过三维摄像机我们就可以改变我们的观察点,观察方向,随意在三维空间中驰骋。之前我们所设定的视角都是通过D3DXMatrixLookAtLH这个函数,通过几个设定好的向量,将视角初始化的,而在程序真正运行时,视角就不再改变了,而这次,我们要实时的生成视角变换矩阵,实时的改变我们的视角,我们所谓的摄像机就是这个原理。

我们通过一个类来封装摄像机,这个类主要的字段就是用四个分量:右分量(rightvector)、上分量(up vector)、观察分量(lookvector)和位置分量(position vector),来确定一个摄像机相对于世界坐标系的位置和朝向。并根据这四个分量计算出一个取景变换矩阵,然后通过取景变换(VIEWTRANSFORM)实现改变视角。



通过这些分量,我们可以确定摄像机的位置和朝向。操作有平移和旋转,那么一共就有6中操作:

(1)沿着观察分量平移(前进后退)

(2)沿着观察分量旋转(左右翻滚)

(3)沿着右分量平移(左右移动)

(4)沿着右分量旋转(朝上下看)

(5)沿着上分量平移(上下移动)

(6)沿着上分量旋转(朝左右看)



二.操作

这里,我们把摄像机的功能封装成一个类,这样,我们就可以非常方便的使用摄像机的功能,而不需要写一大堆代码啦。

要用到几个函数:

(1)D3DXVec3Normalize 将向量单位化
(2)D3DXVec3Cross 叉乘,第二个,第三个参数为参加运算的向量,生成的结果为垂直与两个向量构成平面的向量,由一个参数输出结果
(3)D3DXVec3Dot 点乘,结果返回
(4)D3DXMatrixRotationAxis 创建一个绕任意轴旋转一定角度的矩阵,第一个参数为输出矩阵,第二个参数为轴,第三个参数为角度
(5)D3DXVec3TransformCoord 根据矩阵变换一个向量,第一个参数为输出向量,第二个参数为被变化向量,第三个参数为矩阵
(6)D3DXVec3Length 获得向量的长度,返回

取景变换所解决的其实就是世界坐标系中的物体在以摄像机为中心的坐标系中如何来表示的问题。这就是说,需要将世界坐标系中的物体随着摄像机一起进行变换,这样摄像机的坐标系就与世界坐标系完全重合了。摄像机其实也相当于三维世界中的一个物体,和我们绘制的东西一样。我们把摄像机移动到世界坐标系的原点,然后让右向量与世界坐标系的x方向重合,上向量与世界坐标系的y方向重合,观察向量与世界坐标系的z方向重合,这样,我们就能生成一个矩阵。
当然这个矩阵感觉比较麻烦,我们照抄下来,生成即可。

计算取景变换矩阵的方法如下:
void CCamera::CalculateViewMatrix(D3DXMATRIX *pMatrix)
{
	//规范化三个向量使之成为正交矩阵

	//规范化观察向量
	D3DXVec3Normalize(&m_vLookVector, &m_vLookVector);
	//使上向量与观察向量垂直
	D3DXVec3Cross(&m_vUpVector, &m_vLookVector, &m_vRightVector);
	//规范化上向量
	D3DXVec3Normalize(&m_vUpVector, &m_vUpVector);
	//右向量与上向量垂直
	D3DXVec3Cross(&m_vRightVector, &m_vUpVector, &m_vLookVector);
	//规范化右向量
	D3DXVec3Normalize(&m_vRightVector, &m_vRightVector);

	//创建取景变换矩阵
	pMatrix->_11 = m_vRightVector.x;
	pMatrix->_12 = m_vUpVector.x;
	pMatrix->_13 = m_vLookVector.x;
	pMatrix->_14 = 0.0f;

	pMatrix->_21 = m_vRightVector.y;
	pMatrix->_22 = m_vUpVector.y;
	pMatrix->_23 = m_vLookVector.y;
	pMatrix->_24 = 0.0f;

	pMatrix->_31 = m_vRightVector.z;
	pMatrix->_32 = m_vUpVector.z;
	pMatrix->_33 = m_vLookVector.z;
	pMatrix->_34 = 0.0f;

	pMatrix->_41 = -D3DXVec3Dot(&m_vRightVector, &m_vCameraPosition);
	pMatrix->_42 = -D3DXVec3Dot(&m_vUpVector, &m_vCameraPosition);
	pMatrix->_43 = -D3DXVec3Dot(&m_vLookVector, &m_vCameraPosition);
	pMatrix->_44 = 1.0f;
}
这样,我们就可以根据摄像机类中的四个向量(相机位置,上分量,右分量,观察分量)获得取景变换的矩阵,通过指针传递参数。这样,我们实时的根据这个矩阵进行取景变换,就可以得到实时的画面情况。而我们在逻辑部分要做的就是改变摄像机类中的各个分量即可。

整个摄像机类的设计如下:

.h文件
/************************************************************************/
/* 封装一个摄像机类                                                     */
/************************************************************************/
#ifndef __CCAMERA_H_
#define __CCAMERA_H_
#include "stdafx.h"
#pragma once
class CCamera
{
private:
	//成员变量
	IDirect3DDevice9* m_pDevice;		//D3D设备对象
	D3DXVECTOR3 m_vRightVector;	        //右分量向量
	D3DXVECTOR3 m_vUpVector;			//上分量向量
	D3DXVECTOR3 m_vLookVector;			//观察分量向量
	D3DXVECTOR3 m_vCameraPosition;		//摄像机位置
	D3DXVECTOR3 m_vTargetPosition;		//观察目标位置
	D3DXMATRIX  m_matView;				//取景变换矩阵
	D3DXMATRIX  m_matProj;				//投影变换矩阵

public:
	CCamera(IDirect3DDevice9* pDevice);
	~CCamera(void);

	//计算取景变换矩阵
	void CalculateViewMatrix(D3DXMATRIX *pMatrix);
	//获得投影矩阵
	void GetProjectionMatrix(D3DXMATRIX* pMatrix){*pMatrix = m_matProj;}
	//获得当前摄像机位置向量
	void GetCameraPosition(D3DXVECTOR3* pVector){*pVector = m_vCameraPosition;}
	//返回当前观察向量
	void GetLookVector(D3DXVECTOR3* pVector){*pVector = m_vLookVector;}
	//设置摄像机观察位置向量(默认参数为NULL)
	void  SetTargetPosition(D3DXVECTOR3* pVector = NULL);
	//设置摄像机所在位置向量(默认参数为NULL)
	void SetCameraPosition(D3DXVECTOR3* pVector = NULL);
	//设置取景变换矩阵(默认参数为NULL)
	void SetViewMatrix(D3DXMATRIX* pMatrix = NULL);
	//设置投影变换矩阵(默认参数为NULL)
	void SetProjectionMartix(D3DMATRIX* pMatrix = NULL);

	
	//沿着right分量平移
	void MoveAlongRightVec(float fUnits);
	//沿着up分量平移
	void MoveAlongUpVec(float fUnits);
	//沿着look分量平移
	void MoveAlongLookVec(float fUnits);

	//沿着right分量旋转
	void RotationRightVec(float fAngle);
	//沿着up分量旋转
	void RotationUpVec(float fAngle);
	//沿着look分量旋转
	void RotationLookVec(float fAngle);
};

#endif // !__CCAMERA_H_


.cpp文件:
#include "stdafx.h"
#include "Camera.h"

CCamera::CCamera(IDirect3DDevice9* pDevice)
{
m_pDevice = pDevice;
//各个向量或坐标的初始值
m_vRightVector = D3DXVECTOR3(1.0f, 0.0f, 0.0f);
m_vUpVector = D3DXVECTOR3(0.0f, 1.0f, 0.0f);
m_vLookVector = D3DXVECTOR3(0.0f, 0.0f, 1.0f);
m_vCameraPosition = D3DXVECTOR3(0.0f, 0.0f, -200.0f);
m_vTargetPosition = D3DXVECTOR3(0.0f, 0.0f, 0.0f);
}

CCamera::~CCamera(void)
{

}

void CCamera::CalculateViewMatrix(D3DXMATRIX *pMatrix) { //规范化三个向量使之成为正交矩阵 //规范化观察向量 D3DXVec3Normalize(&m_vLookVector, &m_vLookVector); //使上向量与观察向量垂直 D3DXVec3Cross(&m_vUpVector, &m_vLookVector, &m_vRightVector); //规范化上向量 D3DXVec3Normalize(&m_vUpVector, &m_vUpVector); //右向量与上向量垂直 D3DXVec3Cross(&m_vRightVector, &m_vUpVector, &m_vLookVector); //规范化右向量 D3DXVec3Normalize(&m_vRightVector, &m_vRightVector); //创建取景变换矩阵 pMatrix->_11 = m_vRightVector.x; pMatrix->_12 = m_vUpVector.x; pMatrix->_13 = m_vLookVector.x; pMatrix->_14 = 0.0f; pMatrix->_21 = m_vRightVector.y; pMatrix->_22 = m_vUpVector.y; pMatrix->_23 = m_vLookVector.y; pMatrix->_24 = 0.0f; pMatrix->_31 = m_vRightVector.z; pMatrix->_32 = m_vUpVector.z; pMatrix->_33 = m_vLookVector.z; pMatrix->_34 = 0.0f; pMatrix->_41 = -D3DXVec3Dot(&m_vRightVector, &m_vCameraPosition); pMatrix->_42 = -D3DXVec3Dot(&m_vUpVector, &m_vCameraPosition); pMatrix->_43 = -D3DXVec3Dot(&m_vLookVector, &m_vCameraPosition); pMatrix->_44 = 1.0f; }

void CCamera::SetTargetPosition(D3DXVECTOR3* pVector)
{
if (pVector)
m_vTargetPosition = (*pVector);
else
m_vTargetPosition = D3DXVECTOR3(0.0f, 0.0f, 1.0f);
//观察点位置减去摄像机位置得到坐标向量
m_vLookVector = m_vTargetPosition - m_vCameraPosition;

D3DXVec3Normalize(&m_vLookVector, &m_vLookVector);

//正交并规范化upV和rightV
D3DXVec3Cross(&m_vUpVector, &m_vLookVector, &m_vRightVector);
D3DXVec3Normalize(&m_vUpVector, &m_vUpVector);
D3DXVec3Cross(&m_vRightVector, &m_vUpVector, &m_vLookVector);
D3DXVec3Normalize(&m_vRightVector, &m_vRightVector);
}

void CCamera::SetCameraPosition(D3DXVECTOR3* pVector /* = NULL */)
{
D3DXVECTOR3 v = D3DXVECTOR3(0.0f, 0.0f, -250.0f);
m_vCameraPosition = pVector ? (*pVector) : v;
}

void CCamera::SetViewMatrix(D3DXMATRIX* pMatrix /* = NULL */)
{
if (pMatrix)
m_matView = *pMatrix;
else
CalculateViewMatrix(&m_matView);
m_pDevice->SetTransform(D3DTS_VIEW, &m_matView);

m_vRightVector = D3DXVECTOR3(m_matView._11, m_matView._12, m_matView._13);
m_vUpVector = D3DXVECTOR3(m_matView._21, m_matView._22, m_matView._23);
m_vLookVector = D3DXVECTOR3(m_matView._31, m_matView._32, m_matView._33);
}

void CCamera::SetProjectionMartix(D3DMATRIX* pMatrix /* = NULL */)
{
if (pMatrix)
m_matProj = *pMatrix;
else
D3DXMatrixPerspectiveFovLH(&m_matProj, D3DX_PI / 4.0F, 800 / 600, 1.0f, 30000.0f);
m_pDevice->SetTransform(D3DTS_PROJECTION, &m_matProj);
}

//平移操作
void CCamera::MoveAlongRightVec(float fUnits)
{
m_vCameraPosition += m_vRightVector * fUnits;
m_vTargetPosition += m_vRightVector * fUnits;
}

void CCamera::MoveAlongUpVec(float fUnits)
{
m_vCameraPosition += m_vUpVector * fUnits;
m_vTargetPosition += m_vUpVector * fUnits;
}

void CCamera::MoveAlongLookVec(float fUnits)
{
m_vCameraPosition += m_vLookVector * fUnits;
m_vTargetPosition += m_vLookVector * fUnits;
}

//旋转操作
void CCamera::RotationRightVec(float fAngle)
{
//生成旋转之后的矩阵
D3DXMATRIX r;
D3DXMatrixRotationAxis(&r, &m_vRightVector, fAngle);
//让m_vUp向量与m_vLook向量绕m_vRight向量旋转fAngle角度
D3DXVec3TransformCoord(&m_vUpVector, &m_vUpVector, &r);
D3DXVec3TransformCoord(&m_vLookVector, &m_vLookVector, &r);
//更新观察点位置
m_vTargetPosition = m_vLookVector * D3DXVec3Length(&m_vCameraPosition);
}

void CCamera::RotationUpVec(float fAngle)
{
//生成旋转之后的矩阵
D3DXMATRIX r;
D3DXMatrixRotationAxis(&r, &m_vUpVector, fAngle);
//让m_vRight向量与m_vLook向量绕m_vUp向量旋转fAngle角度
D3DXVec3TransformCoord(&m_vRightVector, &m_vRightVector, &r);
D3DXVec3TransformCoord(&m_vLookVector, &m_vLookVector, &r);
//更新观察点位置
m_vTargetPosition = m_vLookVector * D3DXVec3Length(&m_vCameraPosition);
}

void CCamera::RotationLookVec(float fAngle)
{
//生成旋转之后的矩阵
D3DXMATRIX r;
D3DXMatrixRotationAxis(&r, &m_vLookVector, fAngle);
//让m_vUp向量与m_vRight向量绕m_vLook向量旋转fAngle角度
D3DXVec3TransformCoord(&m_vUpVector, &m_vUpVector, &r);
D3DXVec3TransformCoord(&m_vRightVector, &m_vRightVector, &r);
//更新观察点位置
m_vTargetPosition = m_vLookVector * D3DXVec3Length(&m_vCameraPosition);
}



在使用之前初始化:
g_pCamera = new CCamera(g_pDevice);
	g_pCamera->SetCameraPosition(&D3DXVECTOR3(1.0f, 100.0f, -300.0f));
	g_pCamera->SetTargetPosition(&D3DXVECTOR3(0.0f, 0.0f, 0.0f));
	g_pCamera->SetViewMatrix();
	g_pCamera->SetProjectionMartix();


实时获得取景变换矩阵,并进行变换:

<span style="white-space:pre">	</span>D3DXMATRIX matView;
	g_pCamera->CalculateViewMatrix(&matView);
	g_pDevice->SetTransform(D3DTS_VIEW, &matView);


使用摄像机改变参数,实现移动旋转等操作:

<span style="white-space:pre">	</span>// 沿摄像机各分量移动视角
	if (g_pDirectInput->IsKeyDown(DIK_A))  g_pCamera->MoveAlongRightVec(-1.0f);
	if (g_pDirectInput->IsKeyDown(DIK_D))  g_pCamera->MoveAlongRightVec( 1.0f);
	if (g_pDirectInput->IsKeyDown(DIK_W)) g_pCamera->MoveAlongLookVec( 1.0f);
	if (g_pDirectInput->IsKeyDown(DIK_S))  g_pCamera->MoveAlongLookVec(-1.0f);
	if (g_pDirectInput->IsKeyDown(DIK_I))  g_pCamera->MoveAlongUpVec( 1.0f);
	if (g_pDirectInput->IsKeyDown(DIK_K))  g_pCamera->MoveAlongUpVec(-1.0f);

	//沿摄像机各分量旋转视角
	if (g_pDirectInput->IsKeyDown(DIK_LEFT))  g_pCamera->RotationUpVec(-0.003f);
	if (g_pDirectInput->IsKeyDown(DIK_RIGHT))  g_pCamera->RotationUpVec( 0.003f);
	if (g_pDirectInput->IsKeyDown(DIK_UP))  g_pCamera->RotationRightVec(-0.003f);
	if (g_pDirectInput->IsKeyDown(DIK_DOWN))  g_pCamera->RotationRightVec( 0.003f);
	if (g_pDirectInput->IsKeyDown(DIK_J)) g_pCamera->RotationLookVec(-0.001f);
	if (g_pDirectInput->IsKeyDown(DIK_L)) g_pCamera->RotationLookVec( 0.001f);



三.例子

终于完成啦!搞进去几个模型(从浅墨大大那里偷得,大大不要打我....)
正常视角:



远视角:



翻滚摄像机:



拉近看看萌妹纸:



代码如下(仅包括调用部分):

// D3DDemo.cpp : 定义应用程序的入口点。
//

#include "stdafx.h"
#include "D3DDemo.h"
#include "DirectInput.h"
#include "Camera.h"

#define MAX_LOADSTRING 100

// 全局变量:
HINSTANCE hInst; // 当前实例
TCHAR szTitle[MAX_LOADSTRING]; // 标题栏文本
TCHAR szWindowClass[MAX_LOADSTRING]; // 主窗口类名

// 此代码模块中包含的函数的前向声明:
HWND g_hWnd;
ATOM MyRegisterClass(HINSTANCE hInstance);
BOOL InitInstance(HINSTANCE, int);
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);

//---------改造3D窗口需要的内容------------
LPDIRECT3D9 g_pD3D = NULL; //D3D接口指针
LPDIRECT3DDEVICE9 g_pDevice = NULL; //D3D设备指针
CDirectInput* g_pDirectInput = NULL; //控制指针
CCamera* g_pCamera = NULL; //摄像机指针

//创建网格对象所需内容
LPD3DXMESH g_pMesh = NULL; //网格对象
LPDIRECT3DTEXTURE9* g_pTextures = NULL; //网格纹理信息
D3DMATERIAL9* g_pMaterials = NULL; //网格材质信息
DWORD g_dwNumMtrls = 0; //网格材质数目
LPDIRECT3DTEXTURE9 g_pGroundTexture = NULL; //地面纹理

//------------绘制图形步骤1.定义灵活顶点格式
#define D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ|D3DFVF_TEX1)//坐标为经过变换的屏幕坐标,顶点的颜色

//------------绘制图形步骤2.根据上面定义的顶点格式,创建一个顶点的结构体
struct stVertex
{
float _x, _y, _z; //位置坐标
float _u, _v; //纹理坐标

stVertex(float x, float y, float z, float u, float v) : _x(x), _y(y), _z(z), _u(u), _v(v){}
stVertex(){}
};

//----------绘制图形步骤3.声明一个顶点缓冲区指针&一个索引缓冲区指针
LPDIRECT3DVERTEXBUFFER9 g_pVB = NULL;
LPDIRECT3DINDEXBUFFER9 g_pIB = NULL;

//初始化顶点缓冲区
void initVB()
{
//----------绘制图形步骤4.定义一个结构体数组用来给每个顶点赋值
//数组中存储当前程序中顶点的数据


stVertex vertex[4];

// 正面顶点数据
vertex[0] = stVertex(-500.0f, 0.0f, -500.0f, 0.0f, 1.0f);
vertex[1] = stVertex(-500.0f, 0.0f, 500.0f, 0.0f, 0.0f);
vertex[2] = stVertex( 500.0f, 0.0f, -500.0f, 1.0f, 1.0f);
vertex[3] = stVertex( 500.0f, 0.0f, 500.0f, 1.0f, 0.0f);

//----------绘制图形步骤5.为定点缓冲区分配内存,并将数组中的顶点值拷贝到顶点缓冲区中
//通过设备指针来创建顶点缓冲区,用来存储顶点数据
g_pDevice->CreateVertexBuffer(
sizeof(vertex), //顶点缓冲区大小
D3DUSAGE_WRITEONLY, //顶点缓冲区作用
D3DFVF_CUSTOMVERTEX, //通知系统顶点格式
D3DPOOL_MANAGED, //顶点缓冲区存储位置,此处表示由系统处理
&g_pVB, //返回顶点缓冲区指针
NULL //系统保留参数,NULL
);

void* pVertices = NULL;

//锁定顶点缓冲区,向其中拷贝数据
g_pVB->Lock(
0, //锁定的偏移量
sizeof(vertex), //锁定的大小
&pVertices, //锁定之后存储空间
0 //锁定的标识,0
);

//将数组中的内容拷贝到缓冲区中
memcpy(pVertices, vertex, sizeof(vertex));

//解锁
g_pVB->Unlock();

//创建纹理
D3DXCreateTextureFromFile(g_pDevice, TEXT("texture.png"), &g_pGroundTexture);

}

void onCreatD3D()
{
g_pD3D = Direct3DCreate9(D3D_SDK_VERSION);
if (!g_pD3D)
return;

//检测硬件设备能力的方法
/*D3DCAPS9 caps;
ZeroMemory(&caps, sizeof(caps));
g_pD3D->GetDeviceCaps(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, &caps);*/

//获得相关信息,屏幕大小,像素点属性
D3DDISPLAYMODE d3ddm;
ZeroMemory(&d3ddm, sizeof(d3ddm));

g_pD3D->GetAdapterDisplayMode(D3DADAPTER_DEFAULT, &d3ddm);

//设置全屏模式
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory(&d3dpp, sizeof(d3dpp));
/*d3dpp.Windowed = false;
d3dpp.BackBufferWidth = d3ddm.Width;
d3dpp.BackBufferHeight = d3ddm.Height;*/

d3dpp.Windowed = true;
d3dpp.BackBufferFormat = d3ddm.Format;
d3dpp.BackBufferCount = 1;

d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;//交换后原缓冲区数据丢弃

//是否开启自动深度模板缓冲
d3dpp.EnableAutoDepthStencil = true;
//当前自动深度模板缓冲的格式
d3dpp.AutoDepthStencilFormat = D3DFMT_D16;//每个像素点有16位的存储空间,存储离摄像机的距离


g_pD3D->CreateDevice(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, g_hWnd, D3DCREATE_SOFTWARE_VERTEXPROCESSING, &d3dpp, &g_pDevice);

if (!g_pDevice)
return;

//设置渲染状态,设置启用深度值
g_pDevice->SetRenderState(D3DRS_ZENABLE, true);

//设置渲染状态,关闭灯光
g_pDevice->SetRenderState(D3DRS_LIGHTING, false);

//设置渲染状态,裁剪模式
g_pDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);

//g_pDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE) ;

}

void CreateMesh()
{
LPD3DXBUFFER pAdjBuffer = NULL;
LPD3DXBUFFER pMtrlBuffer = NULL;

D3DXLoadMeshFromX(TEXT("miki.X"), D3DXMESH_MANAGED, g_pDevice, &pAdjBuffer, &pMtrlBuffer, NULL, &g_dwNumMtrls, &g_pMesh);

//读取材质和纹理数据
D3DXMATERIAL *pMtrl = (D3DXMATERIAL*)pMtrlBuffer->GetBufferPointer();

g_pMaterials = new D3DMATERIAL9[g_dwNumMtrls];
g_pTextures = new LPDIRECT3DTEXTURE9[g_dwNumMtrls];

for (int i = 0; i < g_dwNumMtrls; i++)
{
g_pMaterials[i] = pMtrl[i].MatD3D;
g_pMaterials[i].Ambient = g_pMaterials[i].Diffuse;

g_pTextures[i] = NULL;
D3DXCreateTextureFromFileA(g_pDevice, pMtrl[i].pTextureFilename, &g_pTextures[i]);
}

SAFE_RELEASE(pAdjBuffer);
SAFE_RELEASE(pMtrlBuffer);
}

void CreateCamera()
{
g_pCamera = new CCamera(g_pDevice); g_pCamera->SetCameraPosition(&D3DXVECTOR3(1.0f, 100.0f, -300.0f)); g_pCamera->SetTargetPosition(&D3DXVECTOR3(0.0f, 0.0f, 0.0f)); g_pCamera->SetViewMatrix(); g_pCamera->SetProjectionMartix();
}

void onInit()
{
//初始化D3D
onCreatD3D();

//初始化顶点缓冲区
initVB();

//创建Mesh模型
CreateMesh();

//创建摄像机
CreateCamera();

}

void onDestroy()
{
if (!g_pDevice)
g_pDevice->Release();
g_pDevice = NULL;
}

void onLogic(float fElapsedTime)
{
//使用DirectInput类读取数据
g_pDirectInput->GetInput();

// 沿摄像机各分量移动视角
if (g_pDirectInput->IsKeyDown(DIK_A)) g_pCamera->MoveAlongRightVec(-1.0f);
if (g_pDirectInput->IsKeyDown(DIK_D)) g_pCamera->MoveAlongRightVec( 1.0f);
if (g_pDirectInput->IsKeyDown(DIK_W)) g_pCamera->MoveAlongLookVec( 1.0f);
if (g_pDirectInput->IsKeyDown(DIK_S)) g_pCamera->MoveAlongLookVec(-1.0f);
if (g_pDirectInput->IsKeyDown(DIK_I)) g_pCamera->MoveAlongUpVec( 1.0f);
if (g_pDirectInput->IsKeyDown(DIK_K)) g_pCamera->MoveAlongUpVec(-1.0f);

//沿摄像机各分量旋转视角
if (g_pDirectInput->IsKeyDown(DIK_LEFT)) g_pCamera->RotationUpVec(-0.003f);
if (g_pDirectInput->IsKeyDown(DIK_RIGHT)) g_pCamera->RotationUpVec( 0.003f);
if (g_pDirectInput->IsKeyDown(DIK_UP)) g_pCamera->RotationRightVec(-0.003f);
if (g_pDirectInput->IsKeyDown(DIK_DOWN)) g_pCamera->RotationRightVec( 0.003f);
if (g_pDirectInput->IsKeyDown(DIK_J)) g_pCamera->RotationLookVec(-0.001f);
if (g_pDirectInput->IsKeyDown(DIK_L)) g_pCamera->RotationLookVec( 0.001f);

//鼠标控制右向量和上向量的旋转
g_pCamera->RotationUpVec(g_pDirectInput->MouseDX()* 0.001f);
g_pCamera->RotationRightVec(g_pDirectInput->MouseDY() * 0.001f);

//鼠标滚轮控制观察点收缩操作
static FLOAT fPosZ=0.0f;
fPosZ += g_pDirectInput->MouseDZ()*0.03f;

//计算并设置取景变换矩阵
D3DXMATRIX matView;
g_pCamera->CalculateViewMatrix(&matView);
g_pDevice->SetTransform(D3DTS_VIEW, &matView);

//把正确的世界变换矩阵存到g_matWorld中
//D3DXMatrixTranslation(&g_matWorld, 0.0f, 0.0f, fPosZ);

}

void Transform()
{
//WorldTransform:世界变换
D3DXMATRIXA16 matWorld;
D3DXMATRIXA16 matScaling;
//生成缩放矩阵
D3DXMatrixScaling(&matScaling, 0.8f, 0.8f, 0.8f);
//生成绕Y轴旋转矩阵,存储于矩阵中
D3DXMatrixRotationY(
&matWorld, //输出矩阵
10.0f //角度
);
matWorld = matScaling * matWorld;
g_pDevice->SetTransform(D3DTS_WORLD, &matWorld);

//ViewTransform:取景变换

D3DXVECTOR3 vEyePt(0.0f, 0.0f, -500.0f); //摄像机世界坐标
D3DXVECTOR3 vLookatPt(0.0f, 0.0f, 0.0f); //观察点世界坐标
D3DXVECTOR3 vUpVec(0.0f, 1.0f, 0.0f); //摄像机的上向量,通常为(0.0f, 1.0f, 0.0f)
D3DXMATRIXA16 matView; //View变换的矩阵
//根据上面的结果计算出矩阵,存入矩阵中
D3DXMatrixLookAtLH(&matView, &vEyePt, &vLookatPt, &vUpVec);
//进行取景变换
g_pDevice->SetTransform(D3DTS_VIEW, &matView);

//ProjectionTransform:投影变换

D3DXMATRIXA16 matProj; //投影变换矩阵
//生成投影变换矩阵,存入上面的矩阵中
D3DXMatrixPerspectiveFovLH(
&matProj, //输出结果矩阵
D3DX_PI / 4, //视域角度,一般为PI/4
1.0f, //显示屏的长宽比
1.0f, //视截体中近截面距离摄像机的位置
1000.0f //视截体中远截面距离摄像机的位置
);
//进行投影变换
g_pDevice->SetTransform(D3DTS_PROJECTION, &matProj);

}

void onRender(float fElasedTime)
{
//前两个参数是0和NULL时,清空整个游戏窗口的内容(清的是后台)
//第三个是清除的对象:前面表示清除颜色缓冲区,后面表示清除深度缓冲区,D3DCLEAR_STENCIL清空模板缓冲区
g_pDevice->Clear(0, NULL, D3DCLEAR_TARGET|D3DCLEAR_ZBUFFER, D3DCOLOR_XRGB(0,100,100), 1.0f, 0);

g_pDevice->BeginScene();

//Transform();

////----------绘制图形步骤6.设置数据源,设置灵活顶点格式,绘制图元

//设置数据流来源
g_pDevice->SetStreamSource(
0, //数据流管道号(0-15)
g_pVB, //数据来源
0, //数据流偏移量
sizeof(stVertex) //每个数据的字节数大小
);

//通知系统数据格式,以便解析数据
g_pDevice->SetFVF(D3DFVF_CUSTOMVERTEX);
D3DXMATRIX matWorld;
D3DXMatrixTranslation(&matWorld, 0.0f, 0.0f, 200.0f);
g_pDevice->SetTransform(D3DTS_WORLD, &matWorld);
g_pDevice->SetTexture(0, g_pGroundTexture);

//绘制图元
g_pDevice->DrawPrimitive(
D3DPT_TRIANGLESTRIP, //三角形列
0, //起始点编号
2 //图元数量
);

D3DXMATRIX matWorld1;
D3DXMatrixTranslation(&matWorld1, 0.0f, 100.0f, 200.0f);
g_pDevice->SetTransform(D3DTS_WORLD, &matWorld1);
for (int i = 0; i < g_dwNumMtrls; i++)
{
g_pDevice->SetMaterial(&g_pMaterials[i]);
g_pDevice->SetTexture(0, g_pTextures[i]);
g_pMesh->DrawSubset(i);
}

g_pDevice->EndScene();

g_pDevice->Present(NULL, NULL, NULL, NULL);
}

int APIENTRY _tWinMain(_In_ HINSTANCE hInstance,
_In_opt_ HINSTANCE hPrevInstance,
_In_ LPTSTR lpCmdLine,
_In_ int nCmdShow)
{
UNREFERENCED_PARAMETER(hPrevInstance);
UNREFERENCED_PARAMETER(lpCmdLine);

// TODO: 在此放置代码。
MSG msg;
HACCEL hAccelTable;

// 初始化全局字符串
LoadString(hInstance, IDS_APP_TITLE, szTitle, MAX_LOADSTRING);
LoadString(hInstance, IDC_D3DDEMO, szWindowClass, MAX_LOADSTRING);
MyRegisterClass(hInstance);

// 执行应用程序初始化:
if (!InitInstance (hInstance, nCmdShow))
{
return FALSE;
}

hAccelTable = LoadAccelerators(hInstance, MAKEINTRESOURCE(IDC_D3DDEMO));



ZeroMemory(&msg, sizeof(msg));
while (msg.message != WM_QUIT)
{
if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}
else
{
static DWORD dwTime = timeGetTime();
DWORD dwCurrentTime = timeGetTime();
DWORD dwElapsedTime = dwCurrentTime - dwTime;
float fElapsedTime = dwElapsedTime * 0.001f;

//------------渲染和逻辑部分代码----------
onLogic(fElapsedTime);
onRender(fElapsedTime);
//-----------------------------------------
if (dwElapsedTime < 1000 / 60)
{
Sleep(1000/ 60 - dwElapsedTime);
}
dwTime = dwCurrentTime;
}
}

onDestroy();
return (int) msg.wParam;
}

//
// 函数: MyRegisterClass()
//
// 目的: 注册窗口类。
//
ATOM MyRegisterClass(HINSTANCE hInstance)
{
WNDCLASSEX wcex;

wcex.cbSize = sizeof(WNDCLASSEX);

wcex.style = CS_HREDRAW | CS_VREDRAW;
wcex.lpfnWndProc = WndProc;
wcex.cbClsExtra = 0;
wcex.cbWndExtra = 0;
wcex.hInstance = hInstance;
wcex.hIcon = LoadIcon(hInstance, MAKEINTRESOURCE(IDI_D3DDEMO));
wcex.hCursor = LoadCursor(NULL, IDC_ARROW);
wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
wcex.lpszMenuName = MAKEINTRESOURCE(IDC_D3DDEMO);
wcex.lpszClassName = szWindowClass;
wcex.hIconSm = LoadIcon(wcex.hInstance, MAKEINTRESOURCE(IDI_SMALL));

return RegisterClassEx(&wcex);
}

//
// 函数: InitInstance(HINSTANCE, int)
//
// 目的: 保存实例句柄并创建主窗口
//
// 注释:
//
// 在此函数中,我们在全局变量中保存实例句柄并
// 创建和显示主程序窗口。
//
BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)
{

hInst = hInstance; // 将实例句柄存储在全局变量中

g_hWnd = CreateWindow(szWindowClass, szTitle, WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL, NULL, hInstance, NULL);

if (!g_hWnd)
{
return FALSE;
}

//初始化DirectInput类
g_pDirectInput = new CDirectInput();
g_pDirectInput->Init(g_hWnd, hInst, DISCL_FOREGROUND|DISCL_NONEXCLUSIVE, DISCL_FOREGROUND|DISCL_NONEXCLUSIVE);

SetMenu(g_hWnd, NULL);
ShowWindow(g_hWnd, nCmdShow);
UpdateWindow(g_hWnd);

onInit();

return TRUE;
}

//
// 函数: WndProc(HWND, UINT, WPARAM, LPARAM)
//
// 目的: 处理主窗口的消息。
//
// WM_COMMAND - 处理应用程序菜单
// WM_PAINT - 绘制主窗口
// WM_DESTROY - 发送退出消息并返回
//
//
LRESULT CALLBACK WndProc(HWND g_hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{
switch (message)
{
case WM_KEYDOWN:
if (wParam == VK_ESCAPE)
PostQuitMessage(0);
break;
case WM_CLOSE:
DestroyWindow(g_hWnd);
break;
case WM_DESTROY:
PostQuitMessage(0);
break;
default:
return DefWindowProc(g_hWnd, message, wParam, lParam);
}
return 0;
}


关于摄像机的理解(从网上找的):

从摄像机roll,yaw,pitch的示意图中,我们看到并不是说 roll:就是绕x轴,yaw就是绕y轴,pitch就是绕z轴。

比如一般情况下,摄像机的镜头朝向一般都被定为z轴。

那到底是怎么回事呢?

我目测要从roll,yaw,pitch,这三个词的含义来看。

roll: vt. 卷;滚动,转动;辗

yaw: v.(火箭、飞机、宇宙飞船等)偏航

pitch:vi. 倾斜;投掷;搭帐篷;坠落

为了不再将这三个词和x,y,z牵扯起来,我们只使用描述性的语言。

roll的意思是翻滚,中文中飞机的翻滚是什么,就是绕着机身所在的那个轴。

yaw:是偏航的意思,如果要改变航向,飞机必定是绕着重力方向为轴。

pitch:有倾斜、坠落的意思。飞机在坠落时,必定会一头栽下去,以翅膀所在的直线为轴。

现在把摄像机看成一个飞机,镜头朝向就是飞机头的朝向,是不是一样?
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: