您的位置:首页 > 编程语言 > Python开发

关于Python中闭包与装饰器的理解

2015-06-24 10:04 337 查看
最近学习Python的闭包和装饰器部分内容,之前没有深入面对对象语言,所以这部分内容有些难懂,但不断查资料学习,终于得到自己理解。

1,闭包

所谓闭包,就是将组成函数的语句和这些语句的执行环境打包在一起时,得到的对象

听上去的确有些复杂,还是用一个例子来帮助理解一下。假设我们在foo.py模块中做了如下定义:

#foo.py
filename = "foo.py"

def call_func(f):
return f()    #如前面介绍的,f引用一个函数对象,然后调用它


在另一个func.py模块中,写下了这样的代码:
#func.py
import foo      #导入foo.py

filename = "func.py"
def show_filename():
return "filename: %s" % filename

if __name__ == "__main__":
print foo.call_func(show_filename)   #注意:实际发生调用的位置,是在foo.call_func函数中


当我们用python func.py命令执行func.py时输出结果为:

wo@wo-PC:~$ python func.py
filename:func.py


很显然show_filename()函数使用的filename变量的值,是在与它相同环境(func.py模块)中定义的那个。尽管foo.py模块中也定义了同名的filename变量,而且实际调用show_filename的位置也是在foo.py的call_func内部。

而对于嵌套函数,这一机制则会表现的更加明显:闭包将会捕捉内层函数执行所需的整个环境:

#enclosed.py
import foo
def wrapper():
filename = "enclosed.py"
def show_filename():
return "filename: %s" % filename
print foo.call_func(show_filename)    #输出:filename: enclosed.py


实际上,每一个函数对象,都有一个指向了该函数定义时所在全局名称空间的__globals__属性:

#show_filename inside wrapper
#show_filename.__globals__

{
'__builtins__': <module '__builtin__' (built-in)>,        #内建作用域环境
'__file__': 'enclosed.py',
'wrapper': <function wrapper at 0x7f84768b6578>,      #直接外围环境
'__package__': None,
'__name__': '__main__',
'foo': <module 'foo' from '/home/wo/foo.pyc'>,         #全局环境
'__doc__': None
}


当代码执行到show_filename中的return "filename: %s" % filename语句时,解析器按照下面的顺序查找filename变量:

Local - 本地函数(show_filename)内部,通过任何方式赋值的,而且没有被global关键字声明为全局变量的filename变量;

Enclosing - 直接外围空间(上层函数wrapper)的本地作用域,查找filename变量(如果有多层嵌套,则由内而外逐层查找,直至最外层的函数);

Global - 全局空间(模块enclosed.py),在模块顶层赋值的filename变量;

Builtin - 内置模块(__builtin__)中预定义的变量名中查找filename变量;
在任何一层先找到了符合要求的filename变量,则不再向更外层查找。如果直到Builtin层仍然没有找到符合要求的变量,则抛出NameError异常。这就是变量名解析的:LEGB法则。

总结:

闭包最重要的使用价值在于:封存函数执行的上下文环境

闭包在其捕捉的执行环境(def语句块所在上下文)中,也遵循LEGB规则逐层查找,直至找到符合要求的变量,或者抛出异常。

2,装饰器
那么闭包和装饰器又有什么关系呢?

上文提到闭包的重要特性:封存上下文,这一特性可以巧妙的被用于现有函数的包装,从而为现有函数更加功能。而这就是装饰器。

还是举个例子,代码如下:

#alist = [1, 2, 3, ..., 100]  --> 1+2+3+...+100 = 5050
def lazy_sum():
return reduce(lambda x, y: x+y, alist)


我们定义了一个函数lazy_sum,作用是对alist中的所有元素求和后返回。alist假设为1到100的整数列表:

alist = range(1, 101)


但是出于某种原因,我并不想马上返回计算结果,而是在之后的某个地方,通过显示的调用输出结果。于是我用一个wrapper函数对其进行包装:

def wrapper():
alist = range(1, 101)
def lazy_sum():
return reduce(lambda x, y: x+y, alist)
return lazy_sum

lazy_sum = wrapper()        #wrapper() 返回的是lazy_sum函数对象

if __name__  == "__main__":
lazy_sum()           #5050


这是一个典型的Lazy Evaluation的例子。我们知道,一般情况下,局部变量在函数返回时,就会被垃圾回收器回收,而不能再被使用。但是这里的alist却没有,它随着lazy_sum函数对象的返回被一并返回了(这个说法不准确,实际是包含在了lazy_sum的执行环境中,通过__globals__),从而延长了生命周期。

当在if语句块中调用lazy_sum()的时候,解析器会从上下文中(这里是Enclosing层的wrapper函数的局部作用域中)找到alist列表,计算结果,返回5050。

当你需要动态的给已定义的函数增加功能时,比如:参数检查,类似的原理就变得很有用:

def add(a, b):
return a+b


这是很简单的一个函数:计算a+b的和返回,但我们知道Python是 动态类型+强类型 的语言,你并不能保证用户传入的参数a和b一定是两个整型,他有可能传入了一个整型和一个字符串类型的值:

In [2]: add(1, 2)
Out[2]: 3

In [3]: add(1.2, 3.45)
Out[3]: 4.65

In [4]: add(5, 'hello')
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
/home/wo/<ipython-input-4-f2f9e8aa5eae> in <module>()
----> 1 add(5, 'hello')

/home/wo/<ipython-input-1-02b3d3d6caec> in add(a, b)
1 def add(a, b):
----> 2     return a+b

TypeError: unsupported operand type(s) for +: 'int' and 'str'


于是,解析器无情的抛出了一个TypeError异常。

动态类型:在运行期间确定变量的类型,python确定一个变量的类型是在你第一次给他赋值的时候;

强类型:有强制的类型定义,你有一个整数,除非显示的类型转换,否则绝不能将它当作一个字符串(例如直接尝试将一个整型和一个字符串做+运算);

因此,为了更加优雅的使用add函数,我们需要在执行+运算前,对a和b进行参数检查。这时候装饰器就显得非常有用:

import logging

logging.basicConfig(level = logging.INFO)

def add(a, b):
return a + b

def checkParams(fn):
def wrapper(a, b):
if isinstance(a, (int, float)) and isinstance(b, (int, float)):    #检查参数a和b是否都为整型或浮点型
return fn(a, b)             #是则调用fn(a, b)返回计算结果

#否则通过logging记录错误信息,并友好退出
logging.warning("variable 'a' and 'b' cannot be added")
return
return wrapper     #fn引用add,被封存在闭包的执行环境中返回

if __name__ == "__main__":
#将add函数对象传入,fn指向add
#等号左侧的add,指向checkParams的返回值wrapper
add = checkParams(add)
add(3, 'hello')     #经过类型检查,不会计算结果,而是记录日志并退出


注意checkParams函数:

首先看参数fn,当我们调用checkParams(add)的时候,它将成为函数对象add的一个本地(Local)引用;

在checkParams内部,我们定义了一个wrapper函数,添加了参数类型检查的功能,然后调用了fn(a, b),根据LEGB法则,解释器将搜索几个作用域,并最终在(Enclosing层)checkParams函数的本地作用域中找到fn;

注意最后的return wrapper,这将创建一个闭包,fn变量(add函数对象的一个引用)将会封存在闭包的执行环境中,不会随着checkParams的返回而被回收;

当调用add = checkParams(add)时,add指向了新的wrapper对象,它添加了参数检查和记录日志的功能,同时又能够通过封存的fn,继续调用原始的add进行+运算。

因此调用add(3, 'hello')将不会返回计算结果,而是打印出日志:

<pre name="code" class="python"><span style="font-size:18px;">wo@wo-PC:~$ python func.py
WARNING:root:variable 'a' and 'b' cannot be added</span>


                                            
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: