您的位置:首页 > 运维架构 > Linux

linux驱动--i2c驱动学习

2015-05-26 08:52 176 查看

转至:http://blog.csdn.net/ghostyu/article/details/8094049

预备知识

在阅读本文最好先熟悉一种i2c设备的驱动程序,并且浏览一下i2c-core.c以及芯片提供商的提供的i2c总线驱动(i2c-davinci.c)。标题党请见谅!

其实i2c接口非常的简单,即使用51单片的gpio来模拟i2c,编写一个e2prom或者其他i2c接口的驱动程序,也不是什么难事,几百行代码就能搞定。

但是Linux的i2c驱动体系结构却有相当的复杂度,不管是叫linux i2c驱动还是单片机i2c驱动,其根本还是操作soc芯片内部的i2c模块(也叫i2c adapter)(读写i2c相关的寄存器)来产生start、stop还有ack信号而已。

linux设备驱动到底复杂在什么地方?

假设soc芯片dm368有两个i2c adapter(368内部真正只有一个i2c模块):i2c_adapter1,i2c_adapter1;然后外部有三个i2c接口的设备i2c_device1,i2c_device2,i2c_device3。

现在要求在裸机下写出他们的驱动函数。那么肯定要写出6个不同的驱动函数:

[cpp]
view plaincopyprint?

i2c_adapter1_ReadWrite_i2c_device1(); i2c_adapter1_ReadWrite_i2c_device2() i2c_adapter1_ReadWrite_i2c_device3() i2c_adapter2_ReadWrite_i2c_device1() i2c_adapter2_ReadWrite_i2c_device2() i2c_adapter2_ReadWrite_i2c_device3()

i2c_adapter1_ReadWrite_i2c_device1();
i2c_adapter1_ReadWrite_i2c_device2()
i2c_adapter1_ReadWrite_i2c_device3()
i2c_adapter2_ReadWrite_i2c_device1()
i2c_adapter2_ReadWrite_i2c_device2()
i2c_adapter2_ReadWrite_i2c_device3()
设想一共有m个i2c adapter和n个外设i2c device,那么将需要m*n个驱动。并且这m*n个驱动程序必要会有很大部分重复的代码,而且不利于驱动程序的移植。

如果采用adapter和device分离的思想来写这样的驱动会是怎样呢?



图1

这样分离之后,只需要m+n个驱动,而且Adapter和Device的几乎没有耦合性,增加一个Adapter或者device并不会影响其余的驱动。

这就是分离思想带来的好处。除此之外,linux虽然是C写的,但是大量使用了面向对象的编程方法(可以理解为分层的思想),

仅仅分离细想和分层思想的引入,就大大增加了linux设备驱动的复杂度。

linux驱动中 i2c驱动架构



图2

上图完整的描述了linux i2c驱动架构,虽然I2C硬件体系结构比较简单,但是i2c体系结构在linux中的实现却相当复杂。那么我们如何编写特定i2c接口器件(比如,ov2715,需要i2c来配置寄存器)的驱动程序?就是说上述架构中的那些部分需要我们完成,而哪些是linux内核已经完善的或者是芯片提供商(TI davinci平台已经做好的)已经提供的?

架构层次分类

第一层:提供i2c adapter的硬件驱动,探测、初始化i2c adapter(如申请i2c的io地址和中断号),驱动soc控制的i2c adapter在硬件上产生信号(start、stop、ack)以及处理i2c中断。覆盖图中的硬件实现层

第二层:提供i2c adapter的algorithm,用具体适配器的xxx_xferf()函数来填充i2c_algorithm的master_xfer函数指针,并把赋值后的i2c_algorithm再赋值给i2c_adapter的algo指针。覆盖图中的访问抽象层、i2c核心层

第三层:实现i2c设备驱动中的i2c_driver接口,用具体的i2c device设备的attach_adapter()、detach_adapter()方法赋值给i2c_driver的成员函数指针。实现设备device与总线(或者叫adapter)的挂接。覆盖图中的driver驱动层

第四层:实现i2c设备所对应的具体device的驱动,i2c_driver只是实现设备与总线的挂接,而挂接在总线上的设备则是千差万别的,eeprom和ov2715显然不是同一类的device,所以要实现具体设备device的write()、read()、ioctl()等方法,赋值给file_operations,然后注册字符设备(多数是字符设备)。覆盖图中的driver驱动层

第一层和第二层又叫i2c总线驱动(bus),第三第四属于i2c设备驱动(device driver)。在linux驱动架构中,几乎不需要驱动开发人员再添加bus,因为linux内核几乎集成所有总线bus,如usb、pci、i2c等等。并且总线bus中的【与特定硬件相关的代码】已由芯片提供商编写完成,例如TI davinci平台i2c总线bus与硬件相关的代码在内核目录/drivers/i2c/buses下的i2c-davinci.c源文件中;而三星的s3c-2440平台i2c总线bus为/drivers/i2c/buses/i2c-s3c2410.c

第三第四层又叫设备驱动层与特定device相干的就需要驱动工程师来实现了。

明确了方向后,再来具体分析。

具体分析

i2c_adapter与i2c_client的关系与i2c硬件体系中设配器与设备的关系一致,即i2c_client依附于i2c_adapter,由于一个适配器上可以连接多个i2c设备device,所以相应的,i2c_adapter也可以被多个i2c_client依附,在i2c_adapter中包含i2c_client的链表。同一类的i2c设备device对应一个驱动
4000
driver。driver与device的关系是一对多的关系。

现在,我们就来看一下这几个重要的结构体,分别是i2c_driver i2c_client i2c_adapter,也可以先忽略他们,待会回过头来看会更容易理解

1、i2c_driver

[cpp]
view plaincopyprint?

struct i2c_driver {
int id;
unsigned int class;

int (*attach_adapter)(struct i2c_adapter *);
int (*detach_adapter)(struct i2c_adapter *);

int (*detach_client)(struct i2c_client *);

int (*command)(struct i2c_client *client,unsigned int cmd, void *arg);
struct device_driver driver;
struct list_head list;
};

struct i2c_driver {
int id;
unsigned int class;
int (*attach_adapter)(struct i2c_adapter *);
int (*detach_adapter)(struct i2c_adapter *);
int (*detach_client)(struct i2c_client *);
int (*command)(struct i2c_client *client,unsigned int cmd, void *arg);
struct device_driver driver;
struct list_head list;
};

2、i2c_client

[cpp]
view plaincopyprint?

struct i2c_client {
unsigned int flags; /* div., see below */
unsigned short addr; /* chip address - NOTE: 7bit */
/* addresses are stored in the */
/* _LOWER_ 7 bits */
struct i2c_adapter *adapter; /* the adapter we sit on */
struct i2c_driver *driver; /* and our access routines */
int usage_count; /* How many accesses currently */
/* to the client */
struct device dev; /* the device structure */
struct list_head list;
char name[I2C_NAME_SIZE];
struct completion released;
};

struct i2c_client {
unsigned int flags;		/* div., see below		*/
unsigned short addr;		/* chip address - NOTE: 7bit 	*/
/* addresses are stored in the	*/
/* _LOWER_ 7 bits		*/
struct i2c_adapter *adapter;	/* the adapter we sit on	*/
struct i2c_driver *driver;	/* and our access routines	*/
int usage_count;		/* How many accesses currently  */
/* to the client		*/
struct device dev;		/* the device structure		*/
struct list_head list;
char name[I2C_NAME_SIZE];
struct completion released;
};

3、i2c_adapter

[cpp]
view plaincopyprint?

struct i2c_adapter {
struct module *owner;
unsigned int id;
unsigned int class;
struct i2c_algorithm *algo;/* the algorithm to access the bus */
void *algo_data;

/* --- administration stuff. */
int (*client_register)(struct i2c_client *);
int (*client_unregister)(struct i2c_client *);

/* data fields that are valid for all devices */
struct mutex bus_lock;
struct mutex clist_lock;

int timeout;
int retries;
struct device dev; /* the adapter device */
struct class_device class_dev; /* the class device */

int nr;
struct list_head clients;
struct list_head list;
char name[I2C_NAME_SIZE];
struct completion dev_released;
struct completion class_dev_released;
};

struct i2c_adapter {
struct module *owner;
unsigned int id;
unsigned int class;
struct i2c_algorithm *algo;/* the algorithm to access the bus	*/
void *algo_data;
/* --- administration stuff. */
int (*client_register)(struct i2c_client *);
int (*client_unregister)(struct i2c_client *);
/* data fields that are valid for all devices	*/
struct mutex bus_lock;
struct mutex clist_lock;
int timeout;
int retries;
struct device dev;		/* the adapter device */
struct class_device class_dev;	/* the class device */
int nr;
struct list_head clients;
struct list_head list;
char name[I2C_NAME_SIZE];
struct completion dev_released;
struct completion class_dev_released;
};


4、i2c_algorithm

[cpp]
view plaincopyprint?

struct i2c_algorithm { int (*master_xfer)(struct i2c_adapter *adap,struct i2c_msg *msgs, int num); int (*slave_send)(struct i2c_adapter *,char*,int); int (*slave_recv)(struct i2c_adapter *,char*,int); u32 (*functionality) (struct i2c_adapter *); };

struct i2c_algorithm {
int (*master_xfer)(struct i2c_adapter *adap,struct i2c_msg *msgs,
int num);
int (*slave_send)(struct i2c_adapter *,char*,int);
int (*slave_recv)(struct i2c_adapter *,char*,int);
u32 (*functionality) (struct i2c_adapter *);
};


【i2c_adapter与i2c_algorithm】
i2c_adapter对应与物理上的一个适配器,而i2c_algorithm对应一套通信方法,一个i2c适配器需要i2c_algorithm中提供的(i2c_algorithm中的又是更下层与硬件相关的代码提供)通信函数来控制适配器上产生特定的访问周期。缺少i2c_algorithm的i2c_adapter什么也做不了,因此i2c_adapter中包含其使用i2c_algorithm的指针。

i2c_algorithm中的关键函数master_xfer()用于产生i2c访问周期需要的start stop ack信号,以i2c_msg(即i2c消息)为单位发送和接收通信数据。i2c_msg也非常关键,调用驱动中的发送接收函数需要填充该结构体

[cpp]
view plaincopyprint?

/*
* I2C Message - used for pure i2c transaction, also from /dev 
20000
;interface
*/
struct i2c_msg {
__u16 addr; /* slave address */
__u16 flags;
__u16 len; /* msg length */
__u8 *buf; /* pointer to msg data */
};

/*
* I2C Message - used for pure i2c transaction, also from /dev interface
*/
struct i2c_msg {
__u16 addr;	/* slave address			*/
__u16 flags;
__u16 len;		/* msg length				*/
__u8 *buf;		/* pointer to msg data			*/
};
【i2c_driver和i2c_client】

i2c_driver对应一套驱动方法,其主要函数是attach_adapter()和detach_client(),i2c_client对应真实的i2c物理设备device,每个i2c设备都需要一个i2c_client来描述,i2c_driver与i2c_client的关系是一对多。一个i2c_driver上可以支持多个同等类型的i2c_client.

【i2c_adapter和i2c_client】

i2c_adapter和i2c_client的关系与i2c硬件体系中适配器和设备的关系一致,即i2c_client依附于i2c_adapter,由于一个适配器上可以连接多个i2c设备,所以i2c_adapter中包含依附于它的i2c_client的链表。

从图1图2中都可以看出,linux内核对i2c架构抽象了一个叫核心层core的中间件,它分离了设备驱动device driver和硬件控制的实现细节(如操作i2c的寄存器),core层不但为上面的设备驱动提供封装后的内核注册函数,而且还为小面的硬件时间提供注册接口(也就是i2c总线注册接口),可以说core层起到了承上启下的作用。

我们先看一下i2c-core为外部提供的核心函数(选取部分),i2c-core对应的源文件为i2c-core.c,位于内核目录/driver/i2c/i2c-core.c

[cpp]
view plaincopyprint?

EXPORT_SYMBOL(i2c_add_adapter);
EXPORT_SYMBOL(i2c_del_adapter);
EXPORT_SYMBOL(i2c_del_driver);
EXPORT_SYMBOL(i2c_attach_client);
EXPORT_SYMBOL(i2c_detach_client);

EXPORT_SYMBOL(i2c_transfer);

EXPORT_SYMBOL(i2c_add_adapter);
EXPORT_SYMBOL(i2c_del_adapter);
EXPORT_SYMBOL(i2c_del_driver);
EXPORT_SYMBOL(i2c_attach_client);
EXPORT_SYMBOL(i2c_detach_client);
EXPORT_SYMBOL(i2c_transfer);


如果看过i2c设备驱动程序的人一定对上面几个函数比较熟悉。

i2c_transfer()函数,i2c_transfer()函数本身并不具备驱动适配器物理硬件完成消息交互的能力,它只是寻找到i2c_adapter对应的i2c_algorithm,并使用i2c_algorithm的master_xfer()函数真正的驱动硬件流程,代码清单如下,不重要的已删除。

[cpp]
view plaincopyprint?

int i2c_transfer(struct i2c_adapter * adap, struct i2c_msg *msgs, int num)
{
int ret;
if (adap->algo->master_xfer) {//如果master_xfer函数存在,则调用,否则返回错误
ret = adap->algo->master_xfer(adap,msgs,num);//这个函数在硬件相关的代码中给algorithm赋值
return ret;
} else {
return -ENOSYS;
}
}

int i2c_transfer(struct i2c_adapter * adap, struct i2c_msg *msgs, int num)
{
int ret;
if (adap->algo->master_xfer) {//如果master_xfer函数存在,则调用,否则返回错误
ret = adap->algo->master_xfer(adap,msgs,num);//这个函数在硬件相关的代码中给algorithm赋值
return ret;
} else {
return -ENOSYS;
}
}
当一个具体的client被侦测到并被关联的时候,设备和sysfs文件将被注册。相反的,在client被取消关联的时候,sysfs文件和设备也被注销,驱动开发人员需开发i2c设备驱动时,需要调用下列函数。程序清单如下

[cpp]
view plaincopyprint?

int i2c_attach_client(struct i2c_client *client) { ... device_register(&client->dev); device_create_file(&client->dev, &dev_attr_client_name); ... return 0; }

int i2c_attach_client(struct i2c_client *client)
{
...
device_register(&client->dev);
device_create_file(&client->dev, &dev_attr_client_name);
...
return 0;
}


[cpp]
view plaincopyprint?

int i2c_detach_client(struct i2c_client *client) { ... device_remove_file(&client->dev, &dev_attr_client_name); device_unregister(&client->dev); ... return res; }

int i2c_detach_client(struct i2c_client *client)
{
...
device_remove_file(&client->dev, &dev_attr_client_name);
device_unregister(&client->dev);
...
return res;
}
i2c_add_adapter()函数和i2c_del_adapter()在i2c-davinci.c中有调用,稍后分析

[cpp]
view plaincopyprint?

/* ----- * i2c_add_adapter is called from within the algorithm layer, * when a new hw adapter registers. A new device is register to be * available for clients. */ int i2c_add_adapter(struct i2c_adapter *adap) { ... device_register(&adap->dev); device_create_file(&adap->dev, &dev_attr_name); ... /* inform drivers of new adapters */ list_for_each(item,&drivers) { driver = list_entry(item, struct i2c_driver, list); if (driver->attach_adapter) /* We ignore the return code; if it fails, too bad */ driver->attach_adapter(adap); } ... }

/* -----
* i2c_add_adapter is called from within the algorithm layer,
* when a new hw adapter registers. A new device is register to be
* available for clients.
*/
int i2c_add_adapter(struct i2c_adapter *adap)
{
...
device_register(&adap->dev);
device_create_file(&adap->dev, &dev_attr_name);
...
/* inform drivers of new adapters */
list_for_each(item,&drivers) {
driver = list_entry(item, struct i2c_driver, list);
if (driver->attach_adapter)
/* We ignore the return code; if it fails, too bad */
driver->attach_adapter(adap);
}
...
}


[cpp]
view plaincopyprint?

int i2c_del_adapter(struct i2c_adapter *adap)
{
...
list_for_each(item,&drivers) {
driver = list_entry(item, struct i2c_driver, list);
if (driver->detach_adapter)
if ((res = driver->detach_adapter(adap))) {
}
}
...
list_for_each_safe(item, _n, &adap->clients) {
client = list_entry(item, struct i2c_client, list);

if ((res=client->driver->detach_client(client))) {

}
}
...
device_remove_file(&adap->dev, &dev_attr_name);
device_unregister(&adap->dev);

}

int i2c_del_adapter(struct i2c_adapter *adap)
{
...
list_for_each(item,&drivers) {
driver = list_entry(item, struct i2c_driver, list);
if (driver->detach_adapter)
if ((res = driver->detach_adapter(adap))) {
}
}
...
list_for_each_safe(item, _n, &adap->clients) {
client = list_entry(item, struct i2c_client, list);
if ((res=client->driver->detach_client(client))) {
}
}
...
device_remove_file(&adap->dev, &dev_attr_name);
device_unregister(&adap->dev);
}
i2c-davinci.c是实现与硬件相关功能的代码集合,这部分是与平台相关的,也叫做i2c总线驱动,这部分代码是这样添加到系统中的

[cpp]
view plaincopyprint?

static struct platform_driver davinci_i2c_driver = {
.probe = davinci_i2c_probe,
.remove = davinci_i2c_remove,
.driver = {
.name = "i2c_davinci",
.owner = THIS_MODULE,
},
};

/* I2C may be needed to bring up other drivers */
static int __init davinci_i2c_init_driver(void)
{
return platform_driver_register(&davinci_i2c_driver);
}
subsys_initcall(davinci_i2c_init_driver);

static void __exit davinci_i2c_exit_driver(void)
{
platform_driver_unregister(&davinci_i2c_driver);
}
module_exit(davinci_i2c_exit_driver);

static struct platform_driver davinci_i2c_driver = {
.probe		= davinci_i2c_probe,
.remove		= davinci_i2c_remove,
.driver		= {
.name	= "i2c_davinci",
.owner	= THIS_MODULE,
},
};
/* I2C may be needed to bring up other drivers */
static int __init davinci_i2c_init_driver(void)
{
return platform_driver_register(&davinci_i2c_driver);
}
subsys_initcall(davinci_i2c_init_driver);
static void __exit davinci_i2c_exit_driver(void)
{
platform_driver_unregister(&davinci_i2c_driver);
}
module_exit(davinci_i2c_exit_driver);
并且,i2c适配器控制硬件发送接收数据的函数在这里赋值给i2c-algorithm,i2c_davinci_xfer稍加修改就可以在裸机中控制i2c适配器

[cpp]
view plaincopyprint?

static struct i2c_algorithm i2c_davinci_algo = {
.master_xfer = i2c_davinci_xfer,
.functionality = i2c_davinci_func,
};

static struct i2c_algorithm i2c_davinci_algo = {
.master_xfer	= i2c_davinci_xfer,
.functionality	= i2c_davinci_func,
};
然后在davinci_i2c_probe函数中,将i2c_davinci_algo添加到添加到algorithm系统中

[cpp]
view plaincopyprint?

adap->algo = &i2c_davinci_algo;

adap->algo = &i2c_davinci_algo;

梳理图

有时候代码比任何文字描述都来得直接,但是过多的代码展示反而让人觉得枯燥。这个时候,需要一幅图来梳理一下上面的内容,请看图3。



图3

好了,上面这些代码的展示是告诉我们,linux内核和芯片提供商为我们的的驱动程序提供了 i2c驱动的框架,以及框架底层与硬件相关的代码的实现。剩下的就是针对挂载在i2c两线上的i2c设备了device,如at24c02,例如ov2715,而编写的具体设备驱动了,这里的设备就是硬件接口外挂载的设备,而非硬件接口本身(soc硬件接口本身的驱动可以理解为总线驱动)。

在理解了i2c驱动架构后,我们接下来再作两方面的分析工作:一是具体的i2c设备[b]ov2715驱动源码分析,二是davinci平台的i2c总线驱动源码。[/b]

ov2715设备i2c驱动源码分析

ov2715为200万的CMOS Sensor,芯片的寄存器控制通过i2c接口完成,i2c设备地址为0x6c,寄存器地址为16位两个字节,寄存器值为8位一个字节,可以理解为一般的字符设备。

该驱动程序并非只能用于ov2715,因此源码中存在支持多个设备地址的机制。

该字符设备的用到的结构体有两个,如下

[cpp]
view plaincopyprint?

typedef struct {

int devAddr;

struct i2c_client client; //!< Data structure containing general access routines.
struct i2c_driver driver; //!< Data structure containing information specific to each client.

char name[20];
int nameSize;
int users;

} I2C_Obj;

typedef struct {
int devAddr;
struct i2c_client client;   //!< Data structure containing general access routines.
struct i2c_driver driver;   //!< Data structure containing information specific to each client.

char name[20];
int nameSize;
int users;

} I2C_Obj;


[cpp]
view plaincopyprint?

#define I2C_DEV_MAX_ADDR (0xFF)
#define I2C_TRANSFER_BUF_SIZE_MAX (256)
typedef struct {

struct cdev cdev; /* Char device structure */
int major;
struct semaphore semLock;

I2C_Obj *pObj[I2C_DEV_MAX_ADDR];

uint8_t reg[I2C_TRANSFER_BUF_SIZE_MAX];
uint16_t reg16[I2C_TRANSFER_BUF_SIZE_MAX];
uint8_t buffer[I2C_TRANSFER_BUF_SIZE_MAX*4];

} I2C_Dev;

#define I2C_DEV_MAX_ADDR  (0xFF)
#define I2C_TRANSFER_BUF_SIZE_MAX   (256)
typedef struct {
struct cdev cdev;             /* Char device structure    */
int     major;
struct semaphore semLock;

I2C_Obj *pObj[I2C_DEV_MAX_ADDR];
uint8_t reg[I2C_TRANSFER_BUF_SIZE_MAX];
uint16_t reg16[I2C_TRANSFER_BUF_SIZE_MAX];
uint8_t buffer[I2C_TRANSFER_BUF_SIZE_MAX*4];

} I2C_Dev;


一个I2C_Obj描述一个设备,devAddr保存该设备的地址,I2C_Obj内嵌到结构体I2C_Dev,I2C_Dev管理该驱动所支持的所有设备,尽管支持多个设备,但i2c适配器只有一个,因此需要一个信号量semLock来保护该共享资源,同时只能向一个设备读写数据。成员变量cdev是我们所熟知的,每个字符设备驱动中几乎总会有一个结构体包含它,major用于保存该驱动的主设备编号,reg数组为寄存器地址为8位的寄存器地址缓冲区,reg16为寄存器地址为16的寄存器地址缓冲区。同时可以读写多个寄存器地址的值。buffer为读写的寄存器值

使用I2C_Dev构建一个全局变量gI2C_dev,在驱动的多个地方均需要它。

下面先从字符设备的基本框架入手,然后深入该驱动的细节部分。

首先是该字符设备的初始化和退出函数

[cpp]
view plaincopyprint?

int I2C_devInit(void)
{
int result, i;
dev_t dev = 0;

result = alloc_chrdev_region(&dev, 0, 1, I2C_DRV_NAME);//分配字符设备空间

for(i=0; i<I2C_DEV_MAX_ADDR; i++)
{
gI2C_dev.pObj[i]=NULL;
}

gI2C_dev.major = MAJOR(dev);//保存设备主编号
sema_init(&gI2C_dev.semLock, 1);//信号量初始化
cdev_init(&gI2C_dev.cdev, &gI2C_devFileOps);//使用gI2C_devFileOps初始化该字符设备,gI2C_devFileOps见下文
gI2C_dev.cdev.owner = THIS_MODULE;//常规赋值
gI2C_dev.cdev.ops = &gI2C_devFileOps;//常规赋值 result = cdev_add(&gI2C_dev.cdev, dev, 1);//添加设备到字符设备中 return result;}void I2C_devExit(void){ dev_t devno = MKDEV(gI2C_dev.major, 0); cdev_del(&gI2C_dev.cdev);//从字符设备中删除该设备 unregister_chrdev_region(devno, 1);//回收空间}
gI2c_devFileOps全局变量,驱动初始化会用到该结构体变量
struct file_operations gI2C_devFileOps = {
.owner = THIS_MODULE,
.open = I2C_devOpen,
.release = I2C_devRelease,
.ioctl = I2C_devIoctl,
};

int I2C_devInit(void)
{
int     result, i;
dev_t   dev = 0;
result = alloc_chrdev_region(&dev, 0, 1, I2C_DRV_NAME);//分配字符设备空间

for(i=0; i<I2C_DEV_MAX_ADDR; i++)
{
gI2C_dev.pObj[i]=NULL;
}
gI2C_dev.major = MAJOR(dev);//保存设备主编号
sema_init(&gI2C_dev.semLock, 1);//信号量初始化
cdev_init(&gI2C_dev.cdev, &gI2C_devFileOps);//使用gI2C_devFileOps初始化该字符设备,gI2C_devFileOps见下文
gI2C_dev.cdev.owner = THIS_MODULE;//常规赋值
gI2C_dev.cdev.ops = &gI2C_devFileOps;//常规赋值 result = cdev_add(&gI2C_dev.cdev, dev, 1);//添加设备到字符设备中 return result;}void I2C_devExit(void){ dev_t devno = MKDEV(gI2C_dev.major, 0); cdev_del(&gI2C_dev.cdev);//从字符设备中删除该设备 unregister_chrdev_region(devno, 1);//回收空间}
gI2c_devFileOps全局变量,驱动初始化会用到该结构体变量
struct file_operations gI2C_devFileOps = {
.owner = THIS_MODULE,
.open = I2C_devOpen,
.release = I2C_devRelease,
.ioctl = I2C_devIoctl,
};
该驱动只实现了三个函数,open,release和ioctl,对于i2c设备来说,这已经足够了。

在I2C_devOpen和I2C_devOpen中并没有做实际的工作,重要的工作均在I2C_devIoctl这个ioctl中完成。I2C_devIoctl代码展示(将影响结构条理的代码去掉,稍后在做详细分析)

[cpp]
view plaincopyprint?

int I2C_devIoctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg)
{
I2C_Obj *pObj;
int status=0;
I2C_TransferPrm transferPrm;

pObj = (I2C_Obj *)filp->private_data;

if(!I2C_IOCTL_CMD_IS_VALID(cmd))
return -1;
cmd = I2C_IOCTL_CMD_GET(cmd);//cmd命令转换,防止混淆,具体原因参见上一篇文章:ioctl中的cmd

down_interruptible(&gI2C_dev.semLock); //信号量down

switch(cmd)
{
case I2C_CMD_SET_DEV_ADDR://命令1,设置设备地址
filp->private_data = I2C_create(arg);

case I2C_CMD_WRITE: //命令2,写寄存器值

status = copy_from_user(&transferPrm, (void *)arg, sizeof(transferPrm));
...

break;
case I2C_CMD_READ: //命令3,读寄存器值

status = copy_from_user(&transferPrm, (void *)arg, sizeof(transferPrm));
...

break;
default:
status = -1;
break;
}

up(&gI2C_dev.semLock); //信号量up

return status;
}

int I2C_devIoctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg)
{
I2C_Obj *pObj;
int status=0;
I2C_TransferPrm transferPrm;

pObj = (I2C_Obj *)filp->private_data;
if(!I2C_IOCTL_CMD_IS_VALID(cmd))
return -1;
cmd = I2C_IOCTL_CMD_GET(cmd);//cmd命令转换,防止混淆,具体原因参见上一篇文章:ioctl中的cmd
down_interruptible(&gI2C_dev.semLock);      //信号量down

switch(cmd)
{
case I2C_CMD_SET_DEV_ADDR://命令1,设置设备地址
filp->private_data = I2C_create(arg);
case I2C_CMD_WRITE:  //命令2,写寄存器值

status = copy_from_user(&transferPrm, (void *)arg, sizeof(transferPrm));
...

break;
case I2C_CMD_READ:  //命令3,读寄存器值

status = copy_from_user(&transferPrm, (void *)arg, sizeof(transferPrm));
...

break;
default:
status = -1;
break;
}
up(&gI2C_dev.semLock);      //信号量up
return status;
}
以上三个命令中最重要最复杂的是第一个I2C_CMD_SET_DEV_ADDR,设置设备地址,之所以重要和复杂,因为在I2C_create()函数中,将通过i2c-core提供的函数把该驱动程序和底层的i2c_adapter联系起来。下面是I2C_create()函数源码

[cpp]
view plaincopyprint?

void *I2C_create(int devAddr) {

int ret;
struct i2c_driver *driver;
struct i2c_client *client = client;
I2C_Obj *pObj;

devAddr >>= 1;

if(devAddr>I2C_DEV_MAX_ADDR) //变量合法性判断
return NULL;

if(gI2C_dev.pObj[devAddr]!=NULL) { //变量合法性判断,如果该地址的设备已经创建,则调过,防止上层错误调用
// already allocated, increment user count, and return the allocated handle
gI2C_dev.pObj[devAddr]->users++;
return gI2C_dev.pObj[devAddr];
}

pObj = (void*)kmalloc( sizeof(I2C_Obj), GFP_KERNEL); //为pObj分配空间
gI2C_dev.pObj[devAddr] = pObj; //将分配的空间地址保存在全局变量里
memset(pObj, 0, sizeof(I2C_Obj));

pObj->client.adapter = NULL;
pObj->users++; //用户基数,初始化为0,当前设为1

pObj->devAddr = devAddr; //保存设备地址

gI2C_curAddr = pObj->devAddr; //gI2C_curAddr为全局的整型变量,用于保存当前的设备地址
driver = &pObj->driver; //将成员变量driver单独抽取出来,因为线面要使用driver来初始化驱动

pObj->nameSize=0;//i2c设备名称,注意,这里不是在/dev下面的设备节点名
pObj->name[pObj->nameSize++] = 'I';
pObj->name[pObj->nameSize++] = '2';
pObj->name[pObj->nameSize++] = 'C';
pObj->name[pObj->nameSize++] = '_';
pObj->name[pObj->nameSize++] = 'A' + ((pObj->devAddr >> 0) & 0xF);
pObj->name[pObj->nameSize++] = 'B' + ((pObj->devAddr >> 4) & 0xF);
pObj->name[pObj->nameSize++] = 0;

driver->driver.name = pObj->name; //保存刚才设置的name
driver->id = I2C_DRIVERID_MISC;
driver->attach_adapter = I2C_attachAdapter; //这个很重要,将驱动连接到i2c适配器上,在后面分析
driver->detach_client = I2C_detachClient; //这个很重,在后面分析

if((ret = i2c_add_driver(driver))) //使用i2c-core(i2c_register_driver函数)的接口,注册该驱动,i2c_add_driver实质调用了driver_register()
{
printk( KERN_ERR "I2C: ERROR: Driver registration failed (address=%x), module not inserted.\n", pObj->devAddr);
}

if(ret<0) {

gI2C_dev.pObj[pObj->devAddr] = NULL;
kfree(pObj);
return NULL;
}
return pObj;
}

void *I2C_create(int devAddr) {
int ret;
struct i2c_driver *driver;
struct i2c_client *client = client;
I2C_Obj *pObj;
devAddr >>= 1;

if(devAddr>I2C_DEV_MAX_ADDR)  //变量合法性判断
return NULL;

if(gI2C_dev.pObj[devAddr]!=NULL) {	//变量合法性判断,如果该地址的设备已经创建,则调过,防止上层错误调用
// already allocated, increment user count, and return the allocated handle
gI2C_dev.pObj[devAddr]->users++;
return gI2C_dev.pObj[devAddr];
}

pObj = (void*)kmalloc( sizeof(I2C_Obj), GFP_KERNEL); //为pObj分配空间
gI2C_dev.pObj[devAddr] = pObj;  //将分配的空间地址保存在全局变量里
memset(pObj, 0, sizeof(I2C_Obj));

pObj->client.adapter = NULL;
pObj->users++;    //用户基数,初始化为0,当前设为1
pObj->devAddr = devAddr;  //保存设备地址

gI2C_curAddr = pObj->devAddr;  //gI2C_curAddr为全局的整型变量,用于保存当前的设备地址
driver = &pObj->driver;  //将成员变量driver单独抽取出来,因为线面要使用driver来初始化驱动
pObj->nameSize=0;//i2c设备名称,注意,这里不是在/dev下面的设备节点名
pObj->name[pObj->nameSize++] = 'I';
pObj->name[pObj->nameSize++] = '2';
pObj->name[pObj->nameSize++] = 'C';
pObj->name[pObj->nameSize++] = '_';
pObj->name[pObj->nameSize++] = 'A' + ((pObj->devAddr >> 0) & 0xF);
pObj->name[pObj->nameSize++] = 'B' + ((pObj->devAddr >> 4) & 0xF);
pObj->name[pObj->nameSize++] = 0;
driver->driver.name = pObj->name; //保存刚才设置的name
driver->id = I2C_DRIVERID_MISC;
driver->attach_adapter = I2C_attachAdapter;   //这个很重要,将驱动连接到i2c适配器上,在后面分析
driver->detach_client = I2C_detachClient;	//这个很重,在后面分析
if((ret = i2c_add_driver(driver)))	//使用i2c-core(i2c_register_driver函数)的接口,注册该驱动,i2c_add_driver实质调用了driver_register()
{
printk( KERN_ERR "I2C: ERROR: Driver registration failed (address=%x), module not inserted.\n", pObj->devAddr);
}
if(ret<0) {
gI2C_dev.pObj[pObj->devAddr] = NULL;
kfree(pObj);
return NULL;
}
return pObj;
}


其他两个命令是I2C_CMD_WRITE和I2C_CMD_READ,这个比较简单,只需设置寄存器地址的大小以及寄存器值的大小,然后通过i2c-core 提供的i2c_transfer()函数发送即可。例如I2C_wirte()

[cpp]
view plaincopyprint?

int I2C_write(I2C_Obj *pObj, uint8_t *reg, uint8_t *buffer, uint8_t count, uint8_t dataSize)
{
uint8_t i;
int err;
struct i2c_client *client;
struct i2c_msg msg[1];
unsigned char data[8];

if(pObj==NULL)
return -ENODEV;

client = &pObj->client;//得到client信息

if(!client->adapter)
return -ENODEV;

if(dataSize<=0||dataSize>4)
return -1;

for(i=0; i<count; i++) {

msg->addr = client->addr;//设置要写的i2c设备地址
msg->flags= 0;//一直为0
msg->buf = data;//date为准备i2c通信的缓冲区,这个缓冲区除了不包含设备地址外,要包括要目标寄存器地址,和要写入该寄存器的值

data[0] = reg[i];//寄存器地址赋值

if(dataSize==1) {//寄存器值长度为1
data[1] = buffer[i];//寄存器值赋值

msg->len = 2; //设置data长度为2
} else if(dataSize==2) {//寄存器值长度为2
data[1] = buffer[2*i+1];
data[2] = buffer[2*i];
msg->len = 3;
}
err = i2c_transfer(client->adapter, msg, 1);//调用i2c-core中的i2c_transfer发送i2c数据
if( err < 0 )
return err;
}

return 0;
}

int I2C_write(I2C_Obj *pObj, uint8_t *reg, uint8_t *buffer, uint8_t count, uint8_t dataSize)
{
uint8_t i;
int err;
struct i2c_client *client;
struct i2c_msg msg[1];
unsigned char data[8];
if(pObj==NULL)
return -ENODEV;
client = &pObj->client;//得到client信息
if(!client->adapter)
return -ENODEV;

if(dataSize<=0||dataSize>4)
return -1;

for(i=0; i<count; i++) {

msg->addr = client->addr;//设置要写的i2c设备地址
msg->flags= 0;//一直为0
msg->buf  = data;//date为准备i2c通信的缓冲区,这个缓冲区除了不包含设备地址外,要包括要目标寄存器地址,和要写入该寄存器的值

data[0] = reg[i];//寄存器地址赋值

if(dataSize==1) {//寄存器值长度为1
data[1]  = buffer[i];//寄存器值赋值
msg->len = 2;  	//设置data长度为2
}	else if(dataSize==2) {//寄存器值长度为2
data[1] = buffer[2*i+1];
data[2] = buffer[2*i];
msg->len = 3;
}
err = i2c_transfer(client->adapter, msg, 1);//调用i2c-core中的i2c_transfer发送i2c数据
if( err < 0 )
return err;
}

return 0;
}

现在,我们重点分析上一段代码void *I2C_create(int devAddr)函数中的i2c_driver结构体部分的代码,下面的代码是从上面I2C_create抽取出来的

[cpp]
view plaincopyprint?

driver->driver.name = pObj->name;
driver->id = I2C_DRIVERID_MISC;
driver->attach_adapter = I2C_attachAdapter;
driver->detach_client = I2C_detachClient;

driver->driver.name = pObj->name;
driver->id = I2C_DRIVERID_MISC;
driver->attach_adapter = I2C_attachAdapter;
driver->detach_client = I2C_detachClient;
在i2c_driver结构体中针对attach_adapter有这样的说明:

[cpp]
view plaincopyprint?

/* Notifies the driver that a new bus has appeared. This routine
* can be used by the driver to test if the bus meets its conditions
* & seek for the presence of the chip(s) it supports. If found, it
* registers the client(s) that are on the bus to the i2c admin. via
* i2c_attach_client.
*/

/* Notifies the driver that a new bus has appeared. This routine
* can be used by the driver to test if the bus meets its conditions
* & seek for the presence of the chip(s) it supports. If found, it
* registers the client(s) that are on the bus to the i2c admin. via
* i2c_attach_client.
*/
意思是通知驱动,i2c适配器已经就绪了,这时可以讲device的driver连接到总线bus上。所以I2C_attachAdapter的作用就是检测client,然后将client连接上来。attach_adapter和detach_client由内核驱动自动调用,我们只需在调用的时候实现必要的功能即可,如下代码展示

[cpp]
view plaincopyprint?

int I2C_attachAdapter(struct i2c_adapter *adapter)
{
return I2C_detectClient(adapter, gI2C_curAddr);
}

int I2C_detectClient(struct i2c_adapter *adapter, int address)
{
I2C_Obj *pObj;
struct i2c_client *client;
int err = 0;

if(address > I2C_DEV_MAX_ADDR) {
printk( KERN_ERR "I2C: ERROR: Invalid device address %x\n", address);
return -1;
}

pObj = gI2C_dev.pObj[address];
if(pObj==NULL) {
printk( KERN_ERR "I2C: ERROR: Object not found for address %x\n", address);
return -1;
}

client = &pObj->client;

if(client->adapter)
return -EBUSY; /* our client is already attached */

memset(client, 0x00, sizeof(struct i2c_client));
client->addr = pObj->devAddr;
client->adapter = adapter;
client->driver = &pObj->driver;

if((err = i2c_attach_client(client)))
{
printk( KERN_ERR "I2C: ERROR: Couldn't attach %s (address=%x)\n", pObj->name, pObj->devAddr);
client->adapter = NULL;
return err;
}
return 0;
}

int I2C_attachAdapter(struct i2c_adapter *adapter)
{
return I2C_detectClient(adapter, gI2C_curAddr);
}
int I2C_detectClient(struct i2c_adapter *adapter, int address)
{
I2C_Obj *pObj;
struct i2c_client *client;
int err = 0;

if(address > I2C_DEV_MAX_ADDR) {
printk( KERN_ERR "I2C: ERROR: Invalid device address %x\n", address);
return -1;
}

pObj = gI2C_dev.pObj[address];
if(pObj==NULL) {
printk( KERN_ERR "I2C: ERROR: Object not found for address %x\n", address);
return -1;
}
client = &pObj->client;
if(client->adapter)
return -EBUSY;  /* our client is already attached */
memset(client, 0x00, sizeof(struct i2c_client));
client->addr = pObj->devAddr;
client->adapter = adapter;
client->driver = &pObj->driver;
if((err = i2c_attach_client(client)))
{
printk( KERN_ERR "I2C: ERROR: Couldn't attach %s (address=%x)\n", pObj->name, pObj->devAddr);
client->adapter = NULL;
return err;
}
return 0;
}
最终I2C_detectClient()函数调用了i2c-core中的i2c_attach_client,从名字上就能看出什么意思,连接client设备。

当内核驱动准备删除该驱动时会自动调用i2c_driver的成员函数:detech_client,因此我们需要实现删除client设备的函数然后赋值给改函数指针,detech_client的说明如下:

[cpp]
view plaincopyprint?

/* tells the driver that a client is about to be deleted & gives it
* the chance to remove its private data. Also, if the client struct
* has been dynamically allocated by the driver in the function above,
* it must be freed here.
*/

/* tells the driver that a client is about to be deleted & gives it
* the chance to remove its private data. Also, if the client struct
* has been dynamically allocated by the driver in the function above,
* it must be freed here.
*/
下面是detech_client调用的函数代码清单,该函数最终调用了i2c-core提供的i2c_detach_client,用于取消client设备的连接

[cpp]
view plaincopyprint?

int I2C_detachClient(struct i2c_client *client)
{
int err;

if(!client->adapter)
return -ENODEV; /* our client isn't attached */

if((err = i2c_detach_client(client))) {
printk( KERN_ERR "Client deregistration failed (address=%x), client not detached.\n", client->addr);
return err;
}

client->adapter = NULL;

return 0;
}

int I2C_detachClient(struct i2c_client *client)
{
int err;
if(!client->adapter)
return -ENODEV; /* our client isn't attached */
if((err = i2c_detach_client(client))) {
printk( KERN_ERR "Client deregistration failed (address=%x), client not detached.\n", client->addr);
return err;
}
client->adapter = NULL;
return 0;
}


ov2715设备的i2c驱动源码的分析就到这里,至于平台相关的i2c总线驱动分析就放到下一篇文章里分析,因为这部分多数情况下并不需要我们亲自去实现。但是对于理解i2c驱动架构来说,还是有很大帮助的。

其他文章:

Linux 设备驱动篇之I2c设备驱动
fulinux
一、I2C驱动体系

虽然I2C硬件体系结构和协议都很容易理解,但是Linux I2C驱动体系结构却有相当的复杂度,它主要由3部分组成,即I2C设备驱动、I2C总线驱动和I2C核心。
1.I2C核心

I2C核心是I2c总线和I2c设备驱动的中间枢纽,它以通用的、与平台无关的接口实现了I2C中设备与适配器的沟通,提供了I2C总线驱动和设备驱动的注册、注销方法,I2C通信方法(即“algorithm”)上层的、与具体适配器无关的代码以及探测设备、检测设备的地址的上层代码等。I2c总线驱动填充I2c_adapter和I2c_algorithm结构体,I2c设备驱动填充I2c_driver和i2c_client结构体并实现其本身所对应设备类型的驱动。
2.I2C总线驱动

I2C总线驱动是对I2C硬件体系结构中适配器的实现,适配器可由CPU控制,甚至可以直接集成在CPU内部。

I2C总线驱动主要包含了I2C适配器数据结构i2c_adapter、I2C适配器的algorithm数据结构i2c_algorithm和控制I2C适配器产生通信信号的函数。

经由I2C总线驱动的代码,我们可以控制I2C适配器以主控制方式产生开始、停止位、读写周期,以及以从设备方式读写、产生ACK等。
3.I2C设备驱动

I2C设备驱动(也称为客户端驱动)是对I2C硬件体系结构中设备端的实现,设备一般挂接在受CPU控制的I2C适配器上,通过I2C适配器与CPU交换数据。

I2C设备驱动主要包含了数据结构体i2c_driver和i2c_client,我们需要具体设备实现其中的成员函数。



[align=left] [/align]

图1 I2C驱动体系结构图1



[align=left] [/align]

图2 I2C驱动体系结构图2

另外,系统中i2c-dev.c文件定义的主设备号为89的设备可以方便地给应用程序提供读写I2c设备寄存器的能力,使得工程师大多数时候并不需要为具体的I2c设备驱动定义文件操作接口。

如何理解adapter和client呢?它在s3c2440中对应的是什么?Adapter和client都是linux驱动软件抽象出来的东西,Linux I2C框架搞那么复杂是为了通用性及为了符合Linux内核驱动模式而制定的。简单的说,你的开发板上有几个I2C接口,就有几个adapter , 也就是有几条I2C bus , I2C client对应的就是你的外围I2C 设备,有几个就有几个client , 把这些设备插入开发板, 对应其中的一条bus, 那么相应的就对应了其中的一个adapter , 接下来的就是I2c核心部分使client与 adapter匹配成对。

在linux内核中,所有的I2C设备都在sysfs文件系统中显示,存在于/sys/bus/i2c/目录下,适配器地址和芯片地址的形式列出,例如:

1. [fulinux@ubuntu linux-3.0]$ tree /sys/bus/i2c/

2. /sys/bus/i2c/

3. |-- devices

4. | |-- i2c-0 -> ../../../devices/pci0000:00/0000:00:02.0/i2c-0

5. | |-- i2c-1 -> ../../../devices/pci0000:00/0000:00:02.0/i2c-1

6. | |-- i2c-2 -> ../../../devices/pci0000:00/0000:00:02.0/i2c-2

7. | |-- i2c-3 -> ../../../devices/pci0000:00/0000:00:02.0/i2c-3

8. | |-- i2c-4 -> ../../../devices/pci0000:00/0000:00:02.0/i2c-4

9. | |-- i2c-5 -> ../../../devices/pci0000:00/0000:00:02.0/i2c-5

10. | |-- i2c-6 -> ../../../devices/pci0000:00/0000:00:02.0/drm/card0/card0-DP-1/i2c-6

11. | `-- i2c-7 -> ../../../devices/pci0000:00/0000:00:02.0/drm/card0/card0-DP-2/i2c-7

12. |-- drivers

13. | |-- 88PM860x

14. | | |-- bind

15. | | |-- uevent

16. | | `-- unbind

17. | |-- aat2870

18. | | |-- bind

19. | | |-- uevent

20. | | `-- unbind

21. | |-- ab3100

22. | | |-- bind

23. | | |-- uevent

24. | | `-- unbind

25. | |-- adp5520

下面我以s3c2440开发板及其之上的EEPROM芯片AT24C02和linux-3.0内核平台讲解I2c的三个部分。

********************************************************************************************

转载声明:希望大家能转载此文谢谢 原文链接

********************************************************************************************
4.s3c2440和at24c02硬件特性

请看s3c2440.pdf

芯片AT24C02的电气特性:

• Low-voltage and Standard-voltage Operation

– 2.7 (VCC= 2.7V to 5.5V)

– 1.8 (VCC= 1.8V to 5.5V)

• Internally Organized 128 x 8 (1K), 256 x 8 (2K), 512 x 8 (4K),

1024 x 8 (8K) or 2048 x 8 (16K)

• Two-wire Serial Interface

• Schmitt Trigger, Filtered Inputs for Noise Suppression

• Bidirectional Data Transfer Protocol

• 100 kHz (1.8V) and 400 kHz (2.7V, 5V) Compatibility

• Write Protect Pin for Hardware Data Protection

• 8-byte Page (1K, 2K), 16-byte Page (4K, 8K, 16K) Write Modes

• Partial Page Writes Allowed

• Self-timed Write Cycle (5 ms max)

• High-reliability

– Endurance: 1 Million Write Cycles

– Data Retention: 100 Years

• Automotive Grade and Lead-free/Halogen-free Devices Available

• 8-lead PDIP, 8-lead JEDEC SOIC, 8-lead MAP, 5-lead SOT23,

8-lead TSSOP and 8-ball dBGA2 Packages

• Die Sales: Wafer Form, Waffle Pack and Bumped Wafers

主要是看AT24C02.pdf



图3 S3c244开发板核心板电路图



图4 AT24C02电路图
5.i2c.h头文件

内核中i2c.h这个头文件对i2c_driver、i2c_client、i2c_adapter和i2c_algorithm着4个数据结构进行了定义。理解这4个结构的作用十分关键,代码清单1、2、3、4分别给出了它们的定义。

代码清单1 i2c_adapter结构体

1. /*

2. * i2c_adapter is the structure used to identify a physical i2c bus along

3. * with the access algorithms necessary to access it.

4. */

5. struct i2c_adapter {

6. struct module *owner;

7. unsigned int class; /* classes to allow probing for */

8. const struct i2c_algorithm *algo; /* the algorithm to access the bus */

9. void *algo_data;

10. /* data fields that are valid for all devices */

11. struct rt_mutex bus_lock;

12. int timeout; /* in jiffies */

13. int retries;

14. struct device dev; /* the adapter device */

15. int nr;

16. char name[48];

17. struct completion dev_released;

18. struct mutex userspace_clients_lock;

19. struct list_head userspace_clients;

20. };

代码清单2 i2c_algorithm结构体

1. /*

2. * The following structs are for those who like to implement new bus drivers:

3. * i2c_algorithm is the interface to a class of hardware solutions which can

4. * be addressed using the same bus algorithms - i.e. bit-banging or the PCF8584

5. * to name two of the most common.

6. */

7. struct i2c_algorithm {

8. /* If an adapter algorithm can't do I2C-level access, set master_xfer

9. to NULL. If an adapter algorithm can do SMBus access, set

10. smbus_xfer. If set to NULL, the SMBus protocol is simulated

11. using common I2C messages */

12. /* master_xfer should return the number of messages successfully

13. processed, or a negative value on error */

14. int (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msgs,

15. int num);

16. int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,

17. unsigned short flags, char read_write,

18. u8 command, int size, union i2c_smbus_data *data);

19. /* To determine what the adapter supports */

20. u32 (*functionality) (struct i2c_adapter *);

21. };

上述代码第4行对应为SMBus传输函数指针,SMBus大部分基于I2C总线规范,SMBus不需要增加额外引脚。与I2C总线相比,SMBus增加了一些新的功能特性,在访问时序也有一定的差异。

代码清单3 i2c_driver结构体

1. /*

2. * struct i2c_driver - represent an I2C device driver

3. * @class: What kind of i2c device we instantiate (for detect)

4. * @attach_adapter: Callback for bus addition (deprecated)

5. * @detach_adapter: Callback for bus removal (deprecated)

6. * @probe: Callback for device binding

7. * @remove: Callback for device unbinding

8. * @shutdown: Callback for device shutdown

9. * @suspend: Callback for device suspend

10. * @resume: Callback for device resume

11. * @alert: Alert callback, for example for the SMBus alert protocol

12. * @command: Callback for bus-wide signaling (optional)

13. * @driver: Device driver model driver

14. * @id_table: List of I2C devices supported by this driver

15. * @detect: Callback for device detection

16. * @address_list: The I2C addresses to probe (for detect)

17. * @clients: List of detected clients we created (for i2c-core use only)

18. *

19. * The driver.owner field should be set to the module owner of this driver.

20. * The driver.name field should be set to the name of this driver.

21. *

22. * For automatic device detection, both @detect and @address_data must

23. * be defined. @class should also be set, otherwise only devices forced

24. * with module parameters will be created. The detect function must

25. * fill at least the name field of the i2c_board_info structure it is

26. * handed upon successful detection, and possibly also the flags field.

27. *

28. * If @detect is missing, the driver will still work fine for enumerated

29. * devices. Detected devices simply won't be supported. This is expected

30. * for the many I2C/SMBus devices which can't be detected reliably, and

31. * the ones which can always be enumerated in practice.

32. *

33. * The i2c_client structure which is handed to the @detect callback is

34. * not a real i2c_client. It is initialized just enough so that you can

35. * call i2c_smbus_read_byte_data and friends on it. Don't do anything

36. * else with it. In particular, calling dev_dbg and friends on it is

37. * not allowed.

38. */

39. struct i2c_driver {

40. unsigned int class;

41. /* Notifies the driver that a new bus has appeared or is about to be

42. * removed. You should avoid using this, it will be removed in a

43. * near future.

44. */

45. int (*attach_adapter)(struct i2c_adapter *) __deprecated;

46. int (*detach_adapter)(struct i2c_adapter *) __deprecated;

47. /* Standard driver model interfaces */

48. int (*probe)(struct i2c_client *, const struct i2c_device_id *);

49. int (*remove)(struct i2c_client *);

50. /* driver model interfaces that don't relate to enumeration */

51. void (*shutdown)(struct i2c_client *);

52. int (*suspend)(struct i2c_client *, pm_message_t mesg);

53. int (*resume)(struct i2c_client *);

54. /* Alert callback, for example for the SMBus alert protocol.

55. * The format and meaning of the data value depends on the protocol.

56. * For the SMBus alert protocol, there is a single bit of data passed

57. * as the alert response's low bit ("event flag").

58. */

59. void (*alert)(struct i2c_client *, unsigned int data);

60. /* a ioctl like command that can be used to perform specific functions

61. * with the device.

62. */

63. int (*command)(struct i2c_client *client, unsigned int cmd, void *arg);

64. struct device_driver driver;

65. const struct i2c_device_id *id_table;

66. /* Device detection callback for automatic device creation */

67. int (*detect)(struct i2c_client *, struct i2c_board_info *);

68. const unsigned short *address_list;

69. struct list_head clients;

70. };

代码清单4 i2c_client结构体

1. /*

2. * struct i2c_client - represent an I2C slave device

3. * @flags: I2C_CLIENT_TEN indicates the device uses a ten bit chip address;

4. * I2C_CLIENT_PEC indicates it uses SMBus Packet Error Checking

5. * @addr: Address used on the I2C bus connected to the parent adapter.

6. * @name: Indicates the type of the device, usually a chip name that's

7. * generic enough to hide second-sourcing and compatible revisions.

8. * @adapter: manages the bus segment hosting this I2C device

9. * @driver: device's driver, hence pointer to access routines

10. * @dev: Driver model device node for the slave.

11. * @irq: indicates the IRQ generated by this device (if any)

12. * @detected: member of an i2c_driver.clients list or i2c-core's

13. * userspace_devices list

14. *

15. * An i2c_client identifies a single device (i.e. chip) connected to an

16. * i2c bus. The behaviour exposed to Linux is defined by the driver

17. * managing the device.

18. */

19. struct i2c_client {

20. unsigned short flags; /* div., see below */

21. unsigned short addr; /* chip address - NOTE: 7bit */

22. /* addresses are stored in the */

23. /* _LOWER_ 7 bits */

24. char name[I2C_NAME_SIZE];

25. struct i2c_adapter *adapter; /* the adapter we sit on */

26. struct i2c_driver *driver; /* and our access routines */

27. struct device dev; /* the device structure */

28. int irq; /* irq issued by device */

29. struct list_head detected;

30. };

下面分析i2c_driver、i2c_client、i2c_adapter和i2c_algorithm这4个数据结构的作用及盘根错节的关系。

(1)2c_adapter与i2c_algorithm

i2c_adapter对应于物理上的一个适配器,而i2c_algorithm对应一套通信方法。一个I2C适配器需要i2c_algorithm中提供的通信函数来控制适配器上产生特定的访问周期。缺少i2c_algorithm的i2c_adapter什么也做不了,因此i2c_adapter中包含其使用的i2c_algorithm的指针。

I2c_algorithm中关键函数master_xfer用于产生I2C访问周期需要的信号,以i2c_msg(即I2C消息)为单位。I2c_msg结构体非常关键,代码清单5给出了它的定义。

代码清单5 i2c_msg结构体

/**

* struct i2c_msg - an I2C transaction segment beginning with START

* @addr: Slave address, either seven or ten bits. When this is a ten

* bit address, I2C_M_TEN must be set in @flags and the adapter

* must support I2C_FUNC_10BIT_ADDR.

* @flags: I2C_M_RD is handled by all adapters. No other flags may be

* provided unless the adapter exported the relevant I2C_FUNC_*

* flags through i2c_check_functionality().

* @len: Number of data bytes in @buf being read from or written to the

* I2C slave address. For read transactions where I2C_M_RECV_LEN

* is set, the caller guarantees that this buffer can hold up to

* 32 bytes in addition to the initial length byte sent by the

* slave (plus, if used, the SMBus PEC); and this value will be

* incremented by the number of block data bytes received.

* @buf: The buffer into which data is read, or from which it's written.

*

* An i2c_msg is the low level representation of one segment of an I2C

* transaction. It is visible to drivers in the @i2c_transfer() procedure,

* to userspace from i2c-dev, and to I2C adapter drivers through the

* @i2c_adapter.@master_xfer() method.

*

* Except when I2C "protocol mangling" is used, all I2C adapters implement

* the standard rules for I2C transactions. Each transaction begins with a

* START. That is followed by the slave address, and a bit encoding read

* versus write. Then follow all the data bytes, possibly including a byte

* with SMBus PEC. The transfer terminates with a NAK, or when all those

* bytes have been transferred and ACKed. If this is the last message in a

* group, it is followed by a STOP. Otherwise it is followed by the next

* @i2c_msg transaction segment, beginning with a (repeated) START.

*

* Alternatively, when the adapter supports I2C_FUNC_PROTOCOL_MANGLING then

* passing certain @flags may have changed those standard protocol behaviors.

* Those flags are only for use with broken/nonconforming slaves, and with

* adapters which are known to support the specific mangling options they

* need (one or more of IGNORE_NAK, NO_RD_ACK, NOSTART, and REV_DIR_ADDR).

*/

struct i2c_msg {

__u16 addr; /* slave address */

__u16 flags;

#define I2C_M_TEN 0x0010 /* this is a ten bit chip address */

#define I2C_M_RD 0x0001 /* read data, from slave to master */

#define I2C_M_NOSTART 0x4000 /* if I2C_FUNC_PROTOCOL_MANGLING */

#define I2C_M_REV_DIR_ADDR 0x2000 /* if I2C_FUNC_PROTOCOL_MANGLING */

#define I2C_M_IGNORE_NAK 0x1000 /* if I2C_FUNC_PROTOCOL_MANGLING */

#define I2C_M_NO_RD_ACK 0x0800 /* if I2C_FUNC_PROTOCOL_MANGLING */

#define I2C_M_RECV_LEN 0x0400 /* length will be first received byte */

__u16 len; /* msg length */

__u8 *buf; /* pointer to msg data */

};

(2)i2c_driver与i2c_client

i2c_driver对应一套驱动方法,其主要成员函数是probe()、remove()、suspend()、resume()等,另外id_table是该驱动所支持的I2C设备的ID表。i2c_client对应于真实的物理设备,每个I2C设备都需要一个i2c_client来描述。I2c_driver和i2c_client的关系是一对多,一个i2c_driver上可以支持多个同类型的i2c_client。

I2c_client信息通常在BSP的板文件中通过i2c_board_info填充,如下面代码就定义了一个I2C设备ID为“24c02”、地址为0x50的i2c_client:

代码清单6 i2c_board_info结构体定义

1. static struct i2c_board_info __initdata smdk2440_i2c_devs[] = {

2. {

3. I2C_BOARD_INFO("24c02", 0x50),

4. .platform_data = &at24c02,

5. },

6. /* more devices can be added using expansion connectors */

7. };

在I2C总线驱动i2c_bus_type的match()函数i2c_device_match()中,会调用i2c_match_id()函数匹配板文件中定义的ID和i2c_driver所支持的ID表。

代码清单7 i2c_device_match函数在linux-3.0/drivers/i2c/i2c-core.c

1. static int i2c_device_match(struct device *dev, struct device_driver *drv)

2. {

3. struct i2c_client *client = i2c_verify_client(dev);

4. struct i2c_driver *driver;

5. if (!client)

6. return 0;

7. /* Attempt an OF style match */

8. if (of_driver_match_device(dev, drv))

9. return 1;

10. driver = to_i2c_driver(drv);

11. /* match on an id table if there is one */

12. if (driver->id_table)

13. return i2c_match_id(driver->id_table, client) != NULL;

14. return 0;

15. }

(3)i2c_adpater与i2c_client

i2c_adapter与i2c_client的关系与I2C硬件体系中适配器和设备的关系一致,即i2c_client依附于i2c_adapter。由于一个适配器上可以连接多个I2C设备,所以一个i2c_adapter也可以被多个i2c_client依附,i2c_adapter中包含依附于它的i2c_client的链表。

代码清单8 i2c_client的链表

1. struct list_head userspace_clients;

假设I2C总线适配器xxx上有两个使用相同驱动程序的yyyI2C设备,在打开I2C总线的设备节点后相关数据结构之间的逻辑组织关系将如下图所示:



[align=left] [/align]

图5 I2C总线的设备节点后相关数据结构之间的逻辑组织关系图

从上面的分析可知,虽然I2C硬件体系结构简单,但是I2C体系结构在linux中的实现却相当复杂。当工程师拿到实际的电路板,面对复杂的linux I2C子系统,应该如何下手写驱动呢?究竟要哪些是需要亲自做的,哪些是内核已经提供的呢?理清这个问题非常有意义,可以使我们面对具体问题时迅速地抓住重点。

一方面,适配器驱动可能是linux内核本身还不包含的;另一方面,挂接在适配器上的就提设备可能也是linux内核还不包含的。因此,工程师要实现的主要工作如下。

提供I2C适配器的硬件驱动,探测、初始化I2C适配器(如申请I2C的I/O地址和中断号)、驱动CPU控制的I2C适配器从硬件上产生各种信号以及处理I2C中断等。

提供I2C适配器的algorithm,具体适配器的xxx_xfer()函数填充i2c_algorithm的master_xfer指针,并把i2c_algorithm指针赋值给i2c_adapter的algo指针。

实现I2C设备驱动中的i2c_driver接口,具体设备yyy_probe()、yyy_remove()、yyy_suspend()、yyy_resume()函数指针和i2c_device_id设备ID表赋值给i2c_driver的probe、remove、suspend、resume和id_table指针。

实现I2C设备所对应类型的具体驱动,i2c_driver只是实现设备与总线的挂接,而挂接在总线上的设备则是千差万别的。例如,如果字符设备,就实现文件操作接口,即实现具体yyy的yyy_read()、yyy_write()和yyy_ioctl()函数等;如果是声卡,就实现ALSA驱动。

二、I2C的第一部分
1.Linux I2C核心

I2C核心(driver/i2c/i2c-core.c)文件中提供了一组不依赖与硬件平台的接口函数,这个文件一般不需要被工程师修改,但是理解其中的主要函数非常关键,因为I2C总线驱动和设备驱动之间依赖于I2C核心作为纽带I2C核心中的主要函数如下。
2.增加/删除i2c_adapter

代码清单9 i2c_add_adapter函数:

1. /**

2. * i2c_add_adapter - declare i2c adapter, use dynamic bus number

3. * @adapter: the adapter to add

4. * Context: can sleep

5. *

6. * This routine is used to declare an I2C adapter when its bus number

7. * doesn't matter. Examples: for I2C adapters dynamically added by

8. * USB links or PCI plugin cards.

9. *

10. * When this returns zero, a new bus number was allocated and stored

11. * in adap->nr, and the specified adapter became available for clients.

12. * Otherwise, a negative errno value is returned.

13. */

14. int i2c_add_adapter(struct i2c_adapter *adapter)

15. {

16. int id, res = 0;

17. retry:

18. if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0)

19. return -ENOMEM;

20. mutex_lock(&core_lock);

21. /* "above" here means "above or equal to", sigh */

22. res = idr_get_new_above(&i2c_adapter_idr, adapter,

23. __i2c_first_dynamic_bus_num, &id);

24. mutex_unlock(&core_lock);

25. if (res < 0) {

26. if (res == -EAGAIN)

27. goto retry;

28. return res;

29. }

30. adapter->nr = id;

31. return i2c_register_adapter(adapter);

32. }

33. EXPORT_SYMBOL(i2c_add_adapter);

代码清单10 I2c_del_adapter函数:

1. /**

2. * i2c_del_adapter - unregister I2C adapter

3. * @adap: the adapter being unregistered

4. * Context: can sleep

5. *

6. * This unregisters an I2C adapter which was previously registered

7. * by @i2c_add_adapter or @i2c_add_numbered_adapter.

8. */

9. int i2c_del_adapter(struct i2c_adapter *adap)

10. {

11. int res = 0;

12. struct i2c_adapter *found;

13. struct i2c_client *client, *next;

14. /* First make sure that this adapter was ever added */

15. mutex_lock(&core_lock);

16. found = idr_find(&i2c_adapter_idr, adap->nr);

17. mutex_unlock(&core_lock);

18. if (found != adap) {

19. pr_debug("i2c-core: attempting to delete unregistered "

20. "adapter [%s]\n", adap->name);

21. return -EINVAL;

22. }

23. /* Tell drivers about this removal */

24. mutex_lock(&core_lock);

25. res = bus_for_each_drv(&i2c_bus_type, NULL, adap,

26. __process_removed_adapter);

27. mutex_unlock(&core_lock);

28. if (res)

29. return res;

30. /* Remove devices instantiated from sysfs */

31. mutex_lock(&adap->userspace_clients_lock);

32. list_for_each_entry_safe(client, next, &adap->userspace_clients,

33. detected) {

34. dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,

35. client->addr);

36. list_del(&client->detected);

37. i2c_unregister_device(client);

38. }

39. mutex_unlock(&adap->userspace_clients_lock);

40.

41. /* Detach any active clients. This can't fail, thus we do not

42. * check the returned value. This is a two-pass process, because

43. * we can't remove the dummy devices during the first pass: they

44. * could have been instantiated by real devices wishing to clean

45. * them up properly, so we give them a chance to do that first. */

46. res = device_for_each_child(&adap->dev, NULL, __unregister_client);

47. res = device_for_each_child(&adap->dev, NULL, __unregister_dummy);

48.

49. #ifdef CONFIG_I2C_COMPAT

50. class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,

51. adap->dev.parent);

52. #endif

53.

54. /* device name is gone after device_unregister */

55. dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);

56.

57. /* clean up the sysfs representation */

58. init_completion(&adap->dev_released);

59. device_unregister(&adap->dev);

60.

61. /* wait for sysfs to drop all references */

62. wait_for_completion(&adap->dev_released);

63.

64. /* free bus id */

65. mutex_lock(&core_lock);

66. idr_remove(&i2c_adapter_idr, adap->nr);

67. mutex_unlock(&core_lock);

68.

69. /* Clear the device structure in case this adapter is ever going to be

70. added again */

71. memset(&adap->dev, 0, sizeof(adap->dev));

72.

73. return 0;

74. }

75. EXPORT_SYMBOL(i2c_del_adapter);

3.增加/删除i2c_driver

代码清单11 I2c_register_driver函数:

1. static int i2c_register_adapter(struct i2c_adapter *adap)

2. {

3. int res = 0;

4.

5. /* Can't register until after driver model init */

6. if (unlikely(WARN_ON(!i2c_bus_type.p))) {

7. res = -EAGAIN;

8. goto out_list;

9. }

10.

11. /* Sanity checks */

12. if (unlikely(adap->name[0] == '\0')) {

13. pr_err("i2c-core: Attempt to register an adapter with "

14. "no name!\n");

15. return -EINVAL;

16. }

17. if (unlikely(!adap->algo)) {

18. pr_err("i2c-core: Attempt to register adapter '%s' with "

19. "no algo!\n", adap->name);

20. return -EINVAL;

21. }

22.

23. rt_mutex_init(&adap->bus_lock);

24. mutex_init(&adap->userspace_clients_lock);

25. INIT_LIST_HEAD(&adap->userspace_clients);

26.

27. /* Set default timeout to 1 second if not already set */

28. if (adap->timeout == 0)

29. adap->timeout = HZ;

30.

31. dev_set_name(&adap->dev, "i2c-%d", adap->nr);

32. adap->dev.bus = &i2c_bus_type;

33. adap->dev.type = &i2c_adapter_type;

34. res = device_register(&adap->dev);

35. if (res)

36. goto out_list;

37.

38. dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);

39.

40. #ifdef CONFIG_I2C_COMPAT

41. res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,

42. adap->dev.parent);

43. if (res)

44. dev_warn(&adap->dev,

45. "Failed to create compatibility class link\n");

46. #endif

47.

48. /* create pre-declared device nodes */

49. if (adap->nr < __i2c_first_dynamic_bus_num)

50. i2c_scan_static_board_info(adap);

51.

52. /* Notify drivers */

53. mutex_lock(&core_lock);

54. bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);

55. mutex_unlock(&core_lock);

56.

57. return 0;

58.

59. out_list:

60. mutex_lock(&core_lock);

61. idr_remove(&i2c_adapter_idr, adap->nr);

62. mutex_unlock(&core_lock);

63. return res;

64. }

代码清单12 i2c_del_driver函数:

1. /*

2. * i2c_del_driver - unregister I2C driver

3. * @driver: the driver being unregistered

4. * Context: can sleep

5. */

6. void i2c_del_driver(struct i2c_driver *driver)

7. {

8. i2c_for_each_dev(driver, __process_removed_driver);

9.

10. driver_unregister(&driver->driver);

11. pr_debug("i2c-core: driver [%s] unregistered\n", driver->driver.name);

12. }

13. EXPORT_SYMBOL(i2c_del_driver);

4.i2c_client依附/脱离

当一个具体的client被侦测到并被关联的时候,设备和使用爽肤水文件件被注册。相反地,在client杯取消关联的时候,sysfs文件和设备也被注销。如下代码清单13。

代码清单13 i2c_new_device函数:

1. /**

2. * i2c_new_device - instantiate an i2c device

3. * @adap: the adapter managing the device

4. * @info: describes one I2C device; bus_num is ignored

5. * Context: can sleep

6. *

7. * Create an i2c device. Binding is handled through driver model

8. * probe()/remove() methods. A driver may be bound to this device when we

9. * return from this function, or any later moment (e.g. maybe hotplugging will

10. * load the driver module). This call is not appropriate for use by mainboard

11. * initialization logic, which usually runs during an arch_initcall() long

12. * before any i2c_adapter could exist.

13. *

14. * This returns the new i2c client, which may be saved for later use with

15. * i2c_unregister_device(); or NULL to indicate an error.

16. */

17. struct i2c_client *

18. i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)

19. {

20. struct i2c_client *client;

21. int status;

22.

23. client = kzalloc(sizeof *client, GFP_KERNEL);

24. if (!client)

25. return NULL;

26.

27. client->adapter = adap;

28.

29. client->dev.platform_data = info->platform_data;

30.

31. if (info->archdata)

32. client->dev.archdata = *info->archdata;

33.

34. client->flags = info->flags;

35. client->addr = info->addr;

36. client->irq = info->irq;

37.

38. strlcpy(client->name, info->type, sizeof(client->name));

39.

40. /* Check for address validity */

41. status = i2c_check_client_addr_validity(client);

42. if (status) {

43. dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",

44. client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);

45. goto out_err_silent;

46. }

47.

48. /* Check for address business */

49. status = i2c_check_addr_busy(adap, client->addr);

50. if (status)

51. goto out_err;

52.

53. client->dev.parent = &client->adapter->dev;

54. client->dev.bus = &i2c_bus_type;

55. client->dev.type = &i2c_client_type;

56. client->dev.of_node = info->of_node;

57.

58. dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),

59. client->addr);

60. status = device_register(&client->dev);

61. if (status)

62. goto out_err;

63.

64. dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",

65. client->name, dev_name(&client->dev));

66.

67. return client;

68.

69. out_err:

70. dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "

71. "(%d)\n", client->name, client->addr, status);

72. out_err_silent:

73. kfree(client);

74. return NULL;

75. }

76. EXPORT_SYMBOL_GPL(i2c_new_device);

77.

78. 代码清单14 i2c_unregister_device函数

79. /**

80. * i2c_unregister_device - reverse effect of i2c_new_device()

81. * @client: value returned from i2c_new_device()

82. * Context: can sleep

83. */

84. void i2c_unregister_device(struct i2c_client *client)

85. {

86. device_unregister(&client->dev);

87. }

88. EXPORT_SYMBOL_GPL(i2c_unregister_device);

5.I2C传输、发送和接收

I2c_transfer()函数本身不具备驱动适配器物理硬件完成消息交互的能力,它只是寻找到i2c_adapter对应的i2c_algorithm,并使用i2c_algorithm的master_xfer()函数真正驱动硬件流程。

代码清单15 i2c_transfer函数

1. /* ----------------------------------------------------

2. * the functional interface to the i2c busses.

3. * ----------------------------------------------------

4. */

5.

6. /**

7. * i2c_transfer - execute a single or combined I2C message

8. * @adap: Handle to I2C bus

9. * @msgs: One or more messages to execute before STOP is issued to

10. * terminate the operation; each message begins with a START.

11. * @num: Number of messages to be executed.

12. *

13. * Returns negative errno, else the number of messages executed.

14. *

15. * Note that there is no requirement that each message be sent to

16. * the same slave address, although that is the most common model.

17. */

18. int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)

19. {

20. unsigned long orig_jiffies;

21. int ret, try;

22.

23. /* REVISIT the fault reporting model here is weak:

24. *

25. * - When we get an error after receiving N bytes from a slave,

26. * there is no way to report "N".

27. *

28. * - When we get a NAK after transmitting N bytes to a slave,

29. * there is no way to report "N" ... or to let the master

30. * continue executing the rest of this combined message, if

31. * that's the appropriate response.

32. *

33. * - When for example "num" is two and we successfully complete

34. * the first message but get an error part way through the

35. * second, it's unclear whether that should be reported as

36. * one (discarding status on the second message) or errno

37. * (discarding status on the first one).

38. */

39.

40. if (adap->algo->master_xfer) {

41. #ifdef DEBUG

42. for (ret = 0; ret < num; ret++) {

43. dev_dbg(&adap->dev, "master_xfer[%d] %c, addr=0x%02x, "

44. "len=%d%s\n", ret, (msgs[ret].flags & I2C_M_RD)

45. ? 'R' : 'W', msgs[ret].addr, msgs[ret].len,

46. (msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : "");

47. }

48. #endif

49.

50. if (in_atomic() || irqs_disabled()) {

51. ret = i2c_trylock_adapter(adap);

52. if (!ret)

53. /* I2C activity is ongoing. */

54. return -EAGAIN;

55. } else {

56. i2c_lock_adapter(adap);

57. }

58.

59. /* Retry automatically on arbitration loss */

60. orig_jiffies = jiffies;

61. for (ret = 0, try = 0; try <= adap->retries; try++) {

62. ret = adap->algo->master_xfer(adap, msgs, num);

63. if (ret != -EAGAIN)

64. break;

65. if (time_after(jiffies, orig_jiffies + adap->timeout))

66. break;

67. }

68. i2c_unlock_adapter(adap);

69.

70. return ret;

71. } else {

72. dev_dbg(&adap->dev, "I2C level transfers not supported\n");

73. return -EOPNOTSUPP;

74. }

75. }

76. EXPORT_SYMBOL(i2c_transfer);

代码清单16 i2c_master_send函数

1. /**

2. * i2c_master_send - issue a single I2C message in master transmit mode

3. * @client: Handle to slave device

4. * @buf: Data that will be written to the slave

5. * @count: How many bytes to write, must be less than 64k since msg.len is u16

6. *

7. * Returns negative errno, or else the number of bytes written.

8. */

9. int i2c_master_send(const struct i2c_client *client, const char *buf, int count)

10. {

11. int ret;

12. struct i2c_adapter *adap = client->adapter;

13. struct i2c_msg msg;

14.

15. msg.addr = client->addr;

16. msg.flags = client->flags & I2C_M_TEN;

17. msg.len = count;

18. msg.buf = (char *)buf;

19.

20. ret = i2c_transfer(adap, &msg, 1);

21.

22. /* If everything went ok (i.e. 1 msg transmitted), return #bytes

23. transmitted, else error code. */

24. return (ret == 1) ? count : ret;

25. }

26. EXPORT_SYMBOL(i2c_master_send);

代码清单17 i2c_master_recv函数

1. /**

2. * i2c_master_recv - issue a single I2C message in master receive mode

3. * @client: Handle to slave device

4. * @buf: Where to store data read from slave

5. * @count: How many bytes to read, must be less than 64k since msg.len is u16

6. *

7. * Returns negative errno, or else the number of bytes read.

8. */

9. int i2c_master_recv(const struct i2c_client *client, char *buf, int count)

10. {

11. struct i2c_adapter *adap = client->adapter;

12. struct i2c_msg msg;

13. int ret;

14.

15. msg.addr = client->addr;

16. msg.flags = client->flags & I2C_M_TEN;

17. msg.flags |= I2C_M_RD;

18. msg.len = count;

19. msg.buf = buf;

20.

21. ret = i2c_transfer(adap, &msg, 1);

22.

23. /* If everything went ok (i.e. 1 msg transmitted), return #bytes

24. transmitted, else error code. */

25. return (ret == 1) ? count : ret;

26. }

27. EXPORT_SYMBOL(i2c_master_recv);

i2c_transfer()函数用于进行I2C适配器和I2C设备之间的一组消息交互,i2c_master_send()函数和i2c_master_recv()函数内部会调用i2c_transfer函数分别完成一条写消息和一条读消息。

三、I2c的第二部分
1.2C总线驱动

(1)I2c总线驱动模块的加载函数要完成两个工作。

l 第一个是初始化i2c适配器所使用的硬件资源,如申请I/O地址、中断号等。

l 第二个是通过i2c_add_adapter()添加i2c_adapter的数据结构,当然这个i2c_adapter数据结构的成员已经被xxx适配器的相应的函数指针所初始化。

(2)I2C总线驱动模块的卸载函数要完成的工作与加载函数相反。

l 释放I2C适配器所使用的硬件资源,如释放I/O地址,中断号等。

l 通过i2c_del_adapter()删除i2c_adapter的函数数据结构。

代码清单18所示为I2C适配器驱动的模块加载和卸载函数的模板。

代码清单18 I2C总线驱动的模板加载和卸载函数模板

1. static int __init i2c_adap_xxx_init(void)

2. {

3. xxx_adapter_hw_init();

4. I2c_add_adapter(&xxx_adapter);

5. }

6. subsys_initcall(i2c_adap_xxx_init);

7.

8. static void __exit i2c_adap_xxx_exit(void)

9. {

10. xxx_adapter_hw_free();

11. i2c_del_adapter(&xxx_adapter);

12. }

13. module_exit(i2c_adap_xxx_exit);

上述代码中xxx_adapter_hw_init()和xxx_adapter_hw_free()函数的实现都与具体的CPU和I2C适配器硬件直接相关。

2.I2C总线通信方法

我们需要为特定的I2C适配器实现其通信方法,主要实现i2c_algorithm的master_xfer()函数和functionality()函数。

Functionality()函数非常简单,用于返回algorithm所支持的通信协议,如I2C_FUNC_I2C、I2C_FUNC_10BIT_ADDR、I2C_FUNC_SMBUS_READ_BYTE、I2C_FUNC_SUMBUS_WRITE_BYTE等。

Master_xfer()函数在I2C适配器上完成传递给它的i2c_msg数组中每个I2C消息,代码清单19所示为xxx设备的master_xfer()函数模板。

代码清单19 I2C总线驱动master_xfer()函数模板

1. static int i2c_adapter_xxx_xfer(structi2c_adapter *adap, struct i2c_msg *msgs, int num)

2. {

3. ......

4. for (i = 0; i < num; i++) {

5. i2c_adapter_xxx_start(); /*产生起始位*/

6. if (msgs[i]->flags & I2C_M_RD) { /*读取*/

7. i2c_adapter_xxx_setaddr((msg->addr << 1) | 1); /*发送从设备地址*/

8. i2c_adapter_xxx_wait_ack(); /*获得从设备的ACK*/

9. i2c_adapter_xxx_readbytes(msgs[i]->buf,msgs[i]->len); /*读取len长度的数据到buf中*/

10. } else {

11. i2c_adapter_xxx_setaddr(msg->addr << 1);

12. i2c_adapter_xxx_wait_ack();

13. i2c_adapter_xxx_writebytes(msgs[i]->buf, msgs[i]->len);

14. }

15. }

16. i2c_adapter_xxx_stop(); /*产生停止位*/

17. }

上述代码实际上给出了一个master_xfer()函数处理I2C消息数组的流程,对于数组中的每个消息,判断消息类型,若为读消息,则赋从设备地址为(msg->addr<<1)|1,否则为msg->addr<<1,对每个消息产生一个开始位,紧接着传送从设备的地址,然后开始数据的发送或接收,队最后的消息还需产生一个停止位。

master_xfer()函数模板中i2c_adapter_xxx_start()、i2c_adapter_xxx_setaddr()、i2c_adapter_xxx_wait_ack()、i2c_adapter_xxx_readbytes()、i2c_adapter_xxx_stop()函数用于完成适配器底层硬件操作,与I2C适配器和CPU的具体硬件直接相关,需要由工程师根据芯片的数据手册来实现。

I2c_adapter_xxx_readbytes()用于从设备上接收一串数据,i2c_adapter_xxx_writebytes()用于向从设备写入一串数据,这两个函数的内部也会涉及I2C总线协议中的ACK应答。

master_xfer()函数的实现在形式上会有很多样,即便是linux内核源代码中已经给出了一些I2C总线驱动的master_xfer()函数,由于由不同的组织或个人完成,风格上的差别也非常大,不一定能与模板完全对应,如master_xfer()函数模板给出的消息处理顺序进行的,而有的驱动以中断方式来完成这个流程。不管具体怎么实施,流程的本质都是不变的。因为这个流程不以驱动工程师的意志为转移,最终由I2C总线硬件上的通信协议决定。

多数I2C总线驱动会定义一个xxx_i2c结构体,作为i2c_adapter的algo_data(类似“是有数据”),其中包含I2C消息数组指针、数组索引及I2C适配器algorithm访问控制用的自旋锁、等待队列等,而master_xfer()函数完成消息数组中消息的处理也可通过对xxx_i2c结构体相关成员的访问来控制。代码清单20所示为xxx_i2c结构体的定义。

代码清单20 xxx_i2c结构体模板

1. struct xxx_i2c {

2. spinlock_t lock;

3. wait_queue_head_t wait;

4. struct i2c_msg *msg;

5. unsigned int msg_num;

6. unsigned int msg_idx;

7. unsigned int msg_ptr;

8. struct i2c_adapter adap;

9. };

对于s3c2440的i2c模块而言内核中做了如下的工作:

S3c2440处理器内部集成了一个I2C控制器,通过4个寄存器就可以方便地对其进行控制,这4个寄存器如下:

l IICCON:I2C控制寄存器。

l IICSTAT:I2C状态寄存器。

l IICDS:I2C收发数据移位寄存器。

l IICADD:I2C地址寄存器。

S3c2440处理器内部集成的I2C控制器可支持主、从两种模式,我们主要使用其主模式。通过对IICCON、IICDS和IICADD寄存器的操作,可

在I2C总线上产生开始位、停止位、数据和地址,而传输的状态则通过IICSTAT寄存器获取。
3.s3c2440 I2C 总线驱动总体分析

s3c_2440的I2C总线驱动driver/i2c/busses/i2c-s3c2410.c支持s3c24xx、s3c64xx、s5pc1xx和s5p64xx处理器,在我们使用的3.0内核版本中,其名称任然叫2410,显然是历史原因引起的。它主要完成以下工作。

设计对应于i2c_adapter_xxx_init()模板的s3c_2440的模块加载函数和对应于i2c_adapter_xxx_exit()函数模板的模块卸载函数。

设计对应于i2c_adapter_xxx_xfer()模板的s3c_2440适配器的通信方法函数。

针对s3c24xx、s3c64xx、s5pc1xx和s5p64xx处理器,functionality()函数s3c24xx_i2c_func()只需要简单地返回I2C_FUNC_I2C|I2C_FUNC_SUMBUS_EMUL|I2C_FUNU_PROTOCOL_MANGLING表明其支持的功能。

下图给出了s3c2440驱动中的主要函数与总线模板函数的对应关系,由于实现通信方法的方式不一样,模板的一个函数可能对应于s3c2440 I2C总线驱动的多个函数。



图6 i2c总线驱动模板于s3c2440 I2C总线驱动的映射

4.S3c2440 I2C适配器驱动的模板加载于卸载

I2C适配器驱动被作为一个单独的模块加载进内核,在模块的加载和卸载函数中,只需注册和注销一个platform——driver结构体,如代码清单21所示。

代码清单21 S3c2440 I2C

1. static int __init i2c_adap_s3c_init(void)

2. {

3. return platform_driver_register(&s3c24xx_i2c_driver);

4. }

5. subsys_initcall(i2c_adap_s3c_init);

6.

7. static void __exit i2c_adap_s3c_exit(void)

8. {

9. platform_driver_unregister(&s3c24xx_i2c_driver);

10. }

11. module_exit(i2c_adap_s3c_exit);

代码清单22 platfrom_driver_register()和platfrom_driver_unregister()函数

1. /**

2. * platform_driver_register - register a driver for platform-level devices

3. * @drv: platform driver structure

4. */

5. int platform_driver_register(struct platform_driver *drv)

6. {

7. drv->driver.bus = &platform_bus_type;

8. if (drv->probe)

9. drv->driver.probe = platform_drv_probe;

10. if (drv->remove)

11. drv->driver.remove = platform_drv_remove;

12. if (drv->shutdown)

13. drv->driver.shutdown = platform_drv_shutdown;

14.

15. return driver_register(&drv->driver);

16. }

17. EXPORT_SYMBOL_GPL(platform_driver_register);

18.

19. /**

20. * platform_driver_unregister - unregister a driver for platform-level devices

21. * @drv: platform driver structure

22. */

23. void platform_driver_unregister(struct platform_driver *drv)

24. {

25. driver_unregister(&drv->driver);

26. }

27. EXPORT_SYMBOL_GPL(platform_driver_unregister);

Platfrom_driver结构体包含了具体适配器的probe()函数、remove()函数、resume()函数指针等信息,它需要被定义和赋值,如代码清单23所示。

代码清单23 platfrom_driver结构体

1. static struct platform_driver s3c24xx_i2c_driver = {

2. .probe = s3c24xx_i2c_probe,

3. .remove = s3c24xx_i2c_remove,

4. .id_table = s3c24xx_driver_ids,

5. .driver = {

6. .owner = THIS_MODULE,

7. .name = "s3c-i2c",

8. .pm = S3C24XX_DEV_PM_OPS,

9. },

10. };

当通过linux内核源代码/drivers/base/platform.c文件中定义platform_driver_register()函数注册platfrom_driver结构体时,其中probe指针指向s3c24xx_i2c_probe()函数将被调用,以初始化适配器硬件。s3c24xx_i2c_init()函数会调用函数。

代码清单24 s3c24xx_i2c_init()函数

1. /* s3c24xx_i2c_init

2. *

3. * initialise the controller, set the IO lines and frequency

4. */

5.

6. static int s3c24xx_i2c_init(struct s3c24xx_i2c *i2c)

7. {

8. unsigned long iicon = S3C2410_IICCON_IRQEN | S3C2410_IICCON_ACKEN;

9. struct s3c2410_platform_i2c *pdata;

10. unsigned int freq;

11.

12. /* get the plafrom data */

13.

14. pdata = i2c->dev->platform_data;

15.

16. /* inititalise the gpio */

17.

18. if (pdata->cfg_gpio)

19. pdata->cfg_gpio(to_platform_device(i2c->dev));

20.

21. /* write slave address */

22.

23. writeb(pdata->slave_addr, i2c->regs + S3C2410_IICADD);

24.

25. dev_info(i2c->dev, "slave address 0x%02x\n", pdata->slave_addr);

26.

27. writel(iicon, i2c->regs + S3C2410_IICCON);

28.

29. /* we need to work out the divisors for the clock... */

30.

31. if (s3c24xx_i2c_clockrate(i2c, &freq) != 0) {

32. writel(0, i2c->regs + S3C2410_IICCON);

33. dev_err(i2c->dev, "cannot meet bus frequency required\n");

34. return -EINVAL;

35. }

36.

37. /* todo - check that the i2c lines aren't being dragged anywhere */

38.

39. dev_info(i2c->dev, "bus frequency set to %d KHz\n", freq);

40. dev_dbg(i2c->dev, "S3C2410_IICCON=0x%02lx\n", iicon);

41.

42. return 0;

43. }

44.

代码清单25 s3c24xx_i2c_probe()函数

1. /* s3c24xx_i2c_probe

2. *

3. * called by the bus driver when a suitable device is found

4. */

5.

6. static int s3c24xx_i2c_probe(struct platform_device *pdev)

7. {

8. struct s3c24xx_i2c *i2c;

9. struct s3c2410_platform_i2c *pdata;

10. struct resource *res;

11. int ret;

12.

13. pdata = pdev->dev.platform_data;

14. if (!pdata) {

15. dev_err(&pdev->dev, "no platform data\n");

16. return -EINVAL;

17. }

18.

19. i2c = kzalloc(sizeof(struct s3c24xx_i2c), GFP_KERNEL);

20. if (!i2c) {

21. dev_err(&pdev->dev, "no memory for state\n");

22. return -ENOMEM;

23. }

24.

25. strlcpy(i2c->adap.name, "s3c2410-i2c", sizeof(i2c->adap.name));

26. i2c->adap.owner = THIS_MODULE;

27. i2c->adap.algo = &s3c24xx_i2c_algorithm;

28. i2c->adap.retries = 2;

29. i2c->adap.class = I2C_CLASS_HWMON | I2C_CLASS_SPD;

30. i2c->tx_setup = 50;

31.

32. spin_lock_init(&i2c->lock);

33. init_waitqueue_head(&i2c->wait);

34.

35. /* find the clock and enable it */

36.

37. i2c->dev = &pdev->dev;

38. i2c->clk = clk_get(&pdev->dev, "i2c");

39. if (IS_ERR(i2c->clk)) {

40. dev_err(&pdev->dev, "cannot get clock\n");

41. ret = -ENOENT;

42. goto err_noclk;

43. }

44.

45. dev_dbg(&pdev->dev, "clock source %p\n", i2c->clk);

46.

47. clk_enable(i2c->clk);

48.

49. /* map the registers */

50.

51. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

52. if (res == NULL) {

53. dev_err(&pdev->dev, "cannot find IO resource\n");

54. ret = -ENOENT;

55. goto err_clk;

56. }

57.

58. i2c->ioarea = request_mem_region(res->start, resource_size(res),

59. pdev->name);

60.

61. if (i2c->ioarea == NULL) {

62. dev_err(&pdev->dev, "cannot request IO\n");

63. ret = -ENXIO;

64. goto err_clk;

65. }

66.

67. i2c->regs = ioremap(res->start, resource_size(res));

68.

69. if (i2c->regs == NULL) {

70. dev_err(&pdev->dev, "cannot map IO\n");

71. ret = -ENXIO;

72. goto err_ioarea;

73. }

74.

75. dev_dbg(&pdev->dev, "registers %p (%p, %p)\n",

76. i2c->regs, i2c->ioarea, res);

77.

78. /* setup info block for the i2c core */

79.

80. i2c->adap.algo_data = i2c;

81. i2c->adap.dev.parent = &pdev->dev;

82.

83. /* initialise the i2c controller */

84.

85. ret = s3c24xx_i2c_init(i2c);

86. if (ret != 0)

87. goto err_iomap;

88.

89. /* find the IRQ for this unit (note, this relies on the init call to

90. * ensure no current IRQs pending

91. */

92.

93. i2c->irq = ret = platform_get_irq(pdev, 0);

94. if (ret <= 0) {

95. dev_err(&pdev->dev, "cannot find IRQ\n");

96. goto err_iomap;

97. }

98.

99. ret = request_irq(i2c->irq, s3c24xx_i2c_irq, IRQF_DISABLED,

100. dev_name(&pdev->dev), i2c);

101.

102. if (ret != 0) {

103. dev_err(&pdev->dev, "cannot claim IRQ %d\n", i2c->irq);

104. goto err_iomap;

105. }

106.

107. ret = s3c24xx_i2c_register_cpufreq(i2c);

108. if (ret < 0) {

109. dev_err(&pdev->dev, "failed to register cpufreq notifier\n");

110. goto err_irq;

111. }

112.

113. /* Note, previous versions of the driver used i2c_add_adapter()

114. * to add the bus at any number. We now pass the bus number via

115. * the platform data, so if unset it will now default to always

116. * being bus 0.

117. */

118.

119. i2c->adap.nr = pdata->bus_num;

120.

121. ret = i2c_add_numbered_adapter(&i2c->adap);

122. if (ret < 0) {

123. dev_err(&pdev->dev, "failed to add bus to i2c core\n");

124. goto err_cpufreq;

125. }

126.

127. platform_set_drvdata(pdev, i2c);

128.

129. dev_info(&pdev->dev, "%s: S3C I2C adapter\n", dev_name(&i2c->adap.dev));

130. clk_disable(i2c->clk);

131. return 0;

132.

133. err_cpufreq:

134. s3c24xx_i2c_deregister_cpufreq(i2c);

135.

136. err_irq:

137. free_irq(i2c->irq, i2c);

138.

139. err_iomap:

140. iounmap(i2c->regs);

141.

142. err_ioarea:

143. release_resource(i2c->ioarea);

144. kfree(i2c->ioarea);

145.

146. err_clk:

147. clk_disable(i2c->clk);

148. clk_put(i2c->clk);

149.

150. err_noclk:

151. kfree(i2c);

152. return ret;

153. }

上述代码中的主体工作是使能硬件并且申请I2C适配器使用I/O地址、中断号等,在这些工作都完成无误后,通过I2C核心提供i2c_add_adapter函数添加这个适配器。当处理器包含多个I2C控制器时,我们通过板文件定义的platform数据中bus_num进行区分。

与s3c24xx_i2c_probe()函数完全相反的功能的函数是s3c24xx_i2c_remove()函数,它在适配器模块函数调用platform_driver_unregister函数是通过platfrom_driver的remove指针方式被调用。Xxx_i2c_remove()的设计模块如代码清单26所示。

********************************************************************************************

转载声明:希望大家能转载此文谢谢 原文链接

********************************************************************************************

代码清单26 s3c2440 I2C总线驱动中的s3c24xx_i2c_remove函数

1. /* s3c24xx_i2c_remove

2. *

3. * called when device is removed from the bus

4. */

5.

6. static int s3c24xx_i2c_remove(struct platform_device *pdev)

7. {

8. struct s3c24xx_i2c *i2c = platform_get_drvdata(pdev);

9.

10. s3c24xx_i2c_deregister_cpufreq(i2c);

11.

12. i2c_del_adapter(&i2c->adap);

13. free_irq(i2c->irq, i2c);

14.

15. clk_disable(i2c->clk);

16. clk_put(i2c->clk);

17.

18. iounmap(i2c->regs);

19.

20. release_resource(i2c->ioarea);

21. kfree(i2c->ioarea);

22. kfree(i2c);

23.

24. return 0;

25. }

上面的代码清单26中用到了s3c24xx_i2c结构体进行适配器所有信息的封装。类似于私有信息结构体,它与代码清单20所示的xxx_i2c结构体模板对应,代码清单27所示为s3c24xx_i2c结构体的定义。

代码清单27 s3c24xx_i2c结构体

1. struct s3c24xx_i2c {

2. spinlock_t lock;

3. wait_queue_head_t wait;

4. unsigned int suspended:1;

5.

6. struct i2c_msg *msg;

7. unsigned int msg_num;

8. unsigned int msg_idx;

9. unsigned int msg_ptr;

10.

11. unsigned int tx_setup;

12. unsigned int irq;

13.

14. enum s3c24xx_i2c_state state;

15. unsigned long clkrate;

16.

17. void __iomem *regs;

18. struct clk *clk;

19. struct device *dev;

20. struct resource *ioarea;

21. struct i2c_adapter adap;

22.

23. #ifdef CONFIG_CPU_FREQ

24. struct notifier_block freq_transition;

25. #endif

26. };

5.s3c2440 I2C 总线通信方法

由代码清单25的23行可以看出,I2C适配器对应的i2c_algorithm结构体实例为s3c24xx_i2c_algorithm,代码清单28所示为s3c24xx_i2c_algorithm的定义。

代码清单28 s3c2440的i2c_algorithm结构体

1. /* i2c bus registration info */

2.

3. static const struct i2c_algorithm s3c24xx_i2c_algorithm = {

4. .master_xfer = s3c24xx_i2c_xfer,

5. .functionality = s3c24xx_i2c_func,

6. };

上述代码第一行指定了s3c2440 I2C总线通信传输函数s3c24xx_i2c_xfer(),这个函数非常关键,所有I2C总线上对设备的访问最终应该由它来完成,代码清单29所示为这个重要函数以及其依赖的s3c24xx_i2c_doxfer()函数和s3c24xx_i2c_message_start()函数的源代码。

代码清单29 s3c2440 I2C总线驱动的master_xfer函数

1. /* s3c24xx_i2c_xfer

2. *

3. * first port of call from the i2c bus code when an message needs

4. * transferring across the i2c bus.

5. */

6.

7. static int s3c24xx_i2c_xfer(struct i2c_adapter *adap,

8. struct i2c_msg *msgs, int num)

9. {

10. struct s3c24xx_i2c *i2c = (struct s3c24xx_i2c *)adap->algo_data;

11. int retry;

12. int ret;

13.

14. clk_enable(i2c->clk);

15.

16. for (retry = 0; retry < adap->retries; retry++) {

17.

18. ret = s3c24xx_i2c_doxfer(i2c, msgs, num);

19.

20. if (ret != -EAGAIN) {

21. clk_disable(i2c->clk);

22. return ret;

23. }

24.

25. dev_dbg(i2c->dev, "Retrying transmission (%d)\n", retry);

26.

27. udelay(100);

28. }

29.

30. clk_disable(i2c->clk);

31. return -EREMOTEIO;

32. }

s3c24xx_i2c_xfer()函数调用s3c24xx_i2c_doxfer()函数传输I2C消息,第13行的循环意味着最多可以重试adap->retres次。

代码清单30 s3c24xx_i2c_doxfer()函数

1. /* s3c24xx_i2c_doxfer

2. *

3. * this starts an i2c transfer

4. */

5.

6. static int s3c24xx_i2c_doxfer(struct s3c24xx_i2c *i2c,

7. struct i2c_msg *msgs, int num)

8. {

9. unsigned long iicstat, timeout;

10. int spins = 20;

11. int ret;

12.

13. if (i2c->suspended)

14. return -EIO;

15.

16. ret = s3c24xx_i2c_set_master(i2c);

17. if (ret != 0) {

18. dev_err(i2c->dev, "cannot get bus (error %d)\n", ret);

19. ret = -EAGAIN;

20. goto out;

21. }

22.

23. spin_lock_irq(&i2c->lock);

24.

25. i2c->msg = msgs;

26. i2c->msg_num = num;

27. i2c->msg_ptr = 0;

28. i2c->msg_idx = 0;

29. i2c->state = STATE_START;

30.

31. s3c24xx_i2c_enable_irq(i2c);

32. s3c24xx_i2c_message_start(i2c, msgs);

33. spin_unlock_irq(&i2c->lock);

34.

35. timeout = wait_event_timeout(i2c->wait, i2c->msg_num == 0, HZ * 5);

36.

37. ret = i2c->msg_idx;

38.

39. /* having these next two as dev_err() makes life very

40. * noisy when doing an i2cdetect */

41.

42. if (timeout == 0)

43. dev_dbg(i2c->dev, "timeout\n");

44. else if (ret != num)

45. dev_dbg(i2c->dev, "incomplete xfer (%d)\n", ret);

46.

47. /* ensure the stop has been through the bus */

48.

49. dev_dbg(i2c->dev, "waiting for bus idle\n");

50.

51. /* first, try busy waiting briefly */

52. do {

53. iicstat = readl(i2c->regs + S3C2410_IICSTAT);

54. } while ((iicstat & S3C2410_IICSTAT_START) && --spins);

55.

56. /* if that timed out sleep */

57. if (!spins) {

58. msleep(1);

59. iicstat = readl(i2c->regs + S3C2410_IICSTAT);

60. }

61.

62. if (iicstat & S3C2410_IICSTAT_START)

63. dev_warn(i2c->dev, "timeout waiting for bus idle\n");

64.

65. out:

66. return ret;

67. }

s3c24xx_i2c_doxfer()首先将s3c2440的I2C适配器设置为I2C主设备,其后初始化s3c24xx_i2c结构体,使能I2C中断,并调用s3c24xx_i2c_message_start()函数启动I2C消息的传输。

代码清单31 s3c24xx_i2c_message_start()函数

1. /* s3c24xx_i2c_message_start

2. *

3. * put the start of a message onto the bus

4. */

5.

6. static void s3c24xx_i2c_message_start(struct s3c24xx_i2c *i2c,

7. struct i2c_msg *msg)

8. {

9. unsigned int addr = (msg->addr & 0x7f) << 1;

10. unsigned long stat;

11. unsigned long iiccon;

12.

13. stat = 0;

14. stat |= S3C2410_IICSTAT_TXRXEN;

15.

16. if (msg->flags & I2C_M_RD) {

17. stat |= S3C2410_IICSTAT_MASTER_RX;

18. addr |= 1;

19. } else

20. stat |= S3C2410_IICSTAT_MASTER_TX;

21.

22. if (msg->flags & I2C_M_REV_DIR_ADDR)

23. addr ^= 1;

24.

25. /* todo - check for wether ack wanted or not */

26. s3c24xx_i2c_enable_ack(i2c);

27.

28. iiccon = readl(i2c->regs + S3C2410_IICCON);

29. writel(stat, i2c->regs + S3C2410_IICSTAT);

30.

31. dev_dbg(i2c->dev, "START: %08lx to IICSTAT, %02x to DS\n", stat, addr);

32. writeb(addr, i2c->regs + S3C2410_IICDS);

33.

34. /* delay here to ensure the data byte has gotten onto the bus

35. * before the transaction is started */

36.

37. ndelay(i2c->tx_setup);

38. dev_dbg(i2c->dev, "iiccon, %08lx\n", iiccon);

39. writel(iiccon, i2c->regs + S3C2410_IICCON);

40.

41. stat |= S3C2410_IICSTAT_START;

42. writel(stat, i2c->regs + S3C2410_IICSTAT);

43. }

s3c24xx_i2c_message_start()函数写s3c2440适配器对应的控制寄存器,向I2C从设备传递开始位和从设备地址。

上述代码只是启动了I2C消息数组的传输周期,并没有完整实现algorithm master_xfer时序的流程。这个流程的完整实现需要借助I2C适配器上的中断来步步推进。代码清单32所示为s3c2440 I2C适配器中断处理函数以及其依赖的i2c_s3c_irq_nextbyte()函数的源码。

代码清单32 s3c2440 I2C适配器中断处理函数

1. /* i2c_s3c_irq_nextbyte

2. *

3. * process an interrupt and work out what to do

4. */

5.

6. static int i2c_s3c_irq_nextbyte(struct s3c24xx_i2c *i2c, unsigned long iicstat)

7. {

8. unsigned long tmp;

9. unsigned char byte;

10. int ret = 0;

11.

12. switch (i2c->state) {

13.

14. case STATE_IDLE:

15. dev_err(i2c->dev, "%s: called in STATE_IDLE\n", __func__);

16. goto out;

17.

18. case STATE_STOP:

19. dev_err(i2c->dev, "%s: called in STATE_STOP\n", __func__);

20. s3c24xx_i2c_disable_irq(i2c);

21. goto out_ack;

22.

23. case STATE_START:

24. /* last thing we did was send a start condition on the

25. * bus, or started a new i2c message

26. */

27.

28. if (iicstat & S3C2410_IICSTAT_LASTBIT &&

29. !(i2c->msg->flags & I2C_M_IGNORE_NAK)) {

30. /* ack was not received... */

31.

32. dev_dbg(i2c->dev, "ack was not received\n");

33. s3c24xx_i2c_stop(i2c, -ENXIO);

34. goto out_ack;

35. }

36.

37. if (i2c->msg->flags & I2C_M_RD)

38. i2c->state = STATE_READ;

39. else

40. i2c->state = STATE_WRITE;

41.

42. /* terminate the transfer if there is nothing to do

43. * as this is used by the i2c probe to find devices. */

44.

45. if (is_lastmsg(i2c) && i2c->msg->len == 0) {

46. s3c24xx_i2c_stop(i2c, 0);

47. goto out_ack;

48. }

49.

50. if (i2c->state == STATE_READ)

51. goto prepare_read;

52.

53. /* fall through to the write state, as we will need to

54. * send a byte as well */

55.

56. case STATE_WRITE:

57. /* we are writing data to the device... check for the

58. * end of the message, and if so, work out what to do

59. */

60.

61. if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) {

62. if (iicstat & S3C2410_IICSTAT_LASTBIT) {

63. dev_dbg(i2c->dev, "WRITE: No Ack\n");

64.

65. s3c24xx_i2c_stop(i2c, -ECONNREFUSED);

66. goto out_ack;

67. }

68. }

69.

70. retry_write:

71.

72. if (!is_msgend(i2c)) {

73. byte = i2c->msg->buf[i2c->msg_ptr++];

74. writeb(byte, i2c->regs + S3C2410_IICDS);

75.

76. /* delay after writing the byte to allow the

77. * data setup time on the bus, as writing the

78. * data to the register causes the first bit

79. * to appear on SDA, and SCL will change as

80. * soon as the interrupt is acknowledged */

81.

82. ndelay(i2c->tx_setup);

83.

84. } else if (!is_lastmsg(i2c)) {

85. /* we need to go to the next i2c message */

86.

87. dev_dbg(i2c->dev, "WRITE: Next Message\n");

88.

89. i2c->msg_ptr = 0;

90. i2c->msg_idx++;

91. i2c->msg++;

92.

93. /* check to see if we need to do another message */

94. if (i2c->msg->flags & I2C_M_NOSTART) {

95.

96. if (i2c->msg->flags & I2C_M_RD) {

97. /* cannot do this, the controller

98. * forces us to send a new START

99. * when we change direction */

100.

101. s3c24xx_i2c_stop(i2c, -EINVAL);

102. }

103.

104. goto retry_write;

105. } else {

106. /* send the new start */

107. s3c24xx_i2c_message_start(i2c, i2c->msg);

108. i2c->state = STATE_START;

109. }

110.

111. } else {

112. /* send stop */

113.

114. s3c24xx_i2c_stop(i2c, 0);

115. }

116. break;

117.

118. case STATE_READ:

119. /* we have a byte of data in the data register, do

120. * something with it, and then work out wether we are

121. * going to do any more read/write

122. */

123.

124. byte = readb(i2c->regs + S3C2410_IICDS);

125. i2c->msg->buf[i2c->msg_ptr++] = byte;

126.

127. prepare_read:

128. if (is_msglast(i2c)) {

129. /* last byte of buffer */

130.

131. if (is_lastmsg(i2c))

132. s3c24xx_i2c_disable_ack(i2c);

133.

134. } else if (is_msgend(i2c)) {

135. /* ok, we've read the entire buffer, see if there

136. * is anything else we need to do */

137.

138. if (is_lastmsg(i2c)) {

139. /* last message, send stop and complete */

140. dev_dbg(i2c->dev, "READ: Send Stop\n");

141.

142. s3c24xx_i2c_stop(i2c, 0);

143. } else {

144. /* go to the next transfer */

145. dev_dbg(i2c->dev, "READ: Next Transfer\n");

146.

147. i2c->msg_ptr = 0;

148. i2c->msg_idx++;

149. i2c->msg++;

150. }

151. }

152.

153. break;

154. }

155.

156. /* acknowlegde the IRQ and get back on with the work */

157.

158. out_ack:

159. tmp = readl(i2c->regs + S3C2410_IICCON);

160. tmp &= ~S3C2410_IICCON_IRQPEND;

161. writel(tmp, i2c->regs + S3C2410_IICCON);

162. out:

163. return ret;

164. }

中断处理函数s3c24xx_i2c_irq()主要通过调用i2c_s3c_irq_nextbyte()函数进行传输工作的进一步推进。I2c_s3c_irq_nextbyte()函数通过switch(i2c->state)的不同状态进行处理,在每种状态下,先检查i2c->state的状态与硬件寄存器应该处于的状态是否一致,如果不一致,则证明有误,直接返回。当I2C处于读状态STATE_READ或是写状态STATE_WRITE时,通过is_lastmsg()函数判断是否传输的最后一条I2C消息,如果是,则产生停止位,否则通过i2c->msg_idx++、i2c->msg++推进到下一条消息。

四、I2C的第三部分
1.Linux I2C 设备驱动

I2C设备驱动要使用i2c_driver和i2c_client数据结构并填充i2c_driver中的成员函数。I2c_client一般被包含在设备的私有信息结构体yyy_data中,而i2c_driver则适合被定义为全局变量并初始化,代码清单33所示为已被初始化的i2c_driver。

代码清单33 已被初始化的i2c_driver

1. static struct i2c_driver yyy_driver= {

2. .driver = {

3. .name = “yyy”,

4. },

5. .probe = yyy_probe,

6. .remove = yyy_remove,

7. .id_table = yyy_id,

8. };

2.Linux I2C 设备驱动的模块加载与卸载

I2C设备驱动的模块加载函数通用的方法是在I2C设备驱动模块加载函数进行通过I2C核心的i2c_add_driver()函数添加i2c_driver的工作,而在模块卸载函数中需要做相反的工作:通过I2C核心的i2c_del_driver()函数删除i2c_driver。代码清单34所示为I2C设备驱动的加载与卸载函数模板

代码清单34 I2C设备驱动的加载与卸载函数模板

1. Static int __init yyy_init(void)

2. {

3. return i2c_add_driver(&yyy_driver);

4. };

5. void __exit yyy_exit(void)

6. {

7. i2c_del_driver(&yyy_driver);

8. }

3.Linux I2C设备驱动的数据传输

在I2C设备上读写数据的时序和数据通常通过i2c_msg数组组织,最后i2c_transfer()函数完成,代码清单35所示为一个读取指定偏移offs寄存器的例子。

代码清单35 I2C设备驱动数据传输范例

1. struct i2c_msg msg[2];

2. /*第一条消息是写消息*/

3. msg[0].addr = client->addr;

4. msg[0].flags = 0;

5. msg[0].len = 1;

6. msg[0].buf = &offs;

7. /*第二条消息是读消息*/

8. msg[1].addr = client->addr;

9. msg[1].flags = I2C_M_RD;

10. msg[1].len = sizeof(buf);

11. msg[1].buf = &buf[0];

i2c_transfer(client->adapter, msg, 2);

4.Linux的i2c-dev.c文件分析

I2c_dev.c文件完全可以被看作一个I2C设备驱动,不过,它实现的一个i2c_client是虚拟、临时的、随着设备文件的打开而产生,并随着设备文件的关闭而撤销,并没有被添加到i2c_adapter的client链表中。i2c-dev.c针对每个I2C适配器生成一个主设备号为89的设备文件,实现了i2c_driver的成员函数以及文件操作接口,所以i2c-dev.c的主体是“i2c_driver成员函数+字符设备驱动”。

i2c-dev.c中提供i2cdev_read()、i2cdev_write()函数来对应用户空间要使用的read()和write()文件操作接口,这两个函数分别调用I2C核心的i2c_master_recv()和i2c_master_send()函数来构造一条I2C消息并引发适配器algorithm通信函数的调用,完成消息的传输,对应于图所示的时序。但是很遗憾,大多数稍微复杂一点I2C设备的读写流程并不对应于一条消息,往往需要两条甚至跟多的消息来进行一次读写周期(即如图所示的重复开始位RepStart模式),这种情况下,在应用层仍然调用read()、write()文件API来读写I2C设备,将不能正确地读写。许多工程师碰到过类似的问题,往往经过相当长时间的调试都没法解决I2C设备的读写,连错误的原因也无法找到,显然是对i2cdev_read()和i2cdev_write()函数的作用有所误解。



[align=left] [/align]

图7 i2cdev_read()和i2cdev_write()函数对应的时序



[align=left] [/align]

图8 RepStart模式

鉴于上述的原因,i2c-dev.c中i2cdev_read()和i2cdev_write()函数不具备太强的通用性,没有太大的实用价值,只能实用于非RepStart模式的情况。对于两条以上消息组成的读写,在用户空间需要组织i2c_msg消息数组并调用I2C_RDWRIOCTL命令。代码清单36所示i2cdev_ioctl()函数的框架。

代码清单36 i2c-dev.c中的i2cdev_ioctl函数

1. static long i2cdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)

2. {

3. struct i2c_client *client = file->private_data;

4. unsigned long funcs;

5. dev_dbg(&client->adapter->dev, "ioctl, cmd=0x%02x, arg=0x%02lx\n",

6. cmd, arg);

7. switch (cmd) {

8. case I2C_SLAVE:

9. case I2C_SLAVE_FORCE:

10. /* NOTE: devices set up to work with "new style" drivers

11. * can't use I2C_SLAVE, even when the device node is not

12. * bound to a driver. Only I2C_SLAVE_FORCE will work.

13. *

14. * Setting the PEC flag here won't affect kernel drivers,

15. * which will be using the i2c_client node registered with

16. * the driver model core. Likewise, when that client has

17. * the PEC flag already set, the i2c-dev driver won't see

18. * (or use) this setting.

19. */

20. if ((arg > 0x3ff) ||

21. (((client->flags & I2C_M_TEN) == 0) && arg > 0x7f))

22. return -EINVAL;

23. if (cmd == I2C_SLAVE && i2cdev_check_addr(client->adapter, arg))

24. return -EBUSY;

25. /* REVISIT: address could become busy later */

26. client->addr = arg;

27. return 0;

28. case I2C_TENBIT:

29. if (arg)

30. client->flags |= I2C_M_TEN;

31. else

32. client->flags &= ~I2C_M_TEN;

33. return 0;

34. case I2C_PEC:

35. if (arg)

36. client->flags |= I2C_CLIENT_PEC;

37. else

38. client->flags &= ~I2C_CLIENT_PEC;

39. return 0;

40. case I2C_FUNCS:

41. funcs = i2c_get_functionality(client->adapter);

42. return put_user(funcs, (unsigned long __user *)arg);

43. case I2C_RDWR:

44. return i2cdev_ioctl_rdrw(client, arg);

45. case I2C_SMBUS:

46. return i2cdev_ioctl_smbus(client, arg);

47. case I2C_RETRIES:

48. client->adapter->retries = arg;

49. break;

50. case I2C_TIMEOUT:

51. /* For historical reasons, user-space sets the timeout

52. * value in units of 10 ms.

53. */

54. client->adapter->timeout = msecs_to_jiffies(arg * 10);

55. break;

56. default:

57. /* NOTE: returning a fault code here could cause trouble

58. * in buggy userspace code. Some old kernel bugs returned

59. * zero in this case, and userspace code might accidentally

60. * have depended on that bug.

61. */

62. return -ENOTTY;

63. }

64. return 0;

65. }

常用的IOCTL包含I2C_SLAVE(设备从设备地址)、I2C_RETRIES(没有收到设备ACK情况下的重试次数,默认为1)、I2C_TIMEOUT以及I2C_RDWR。

5.AT24C02 EEPROM的I2C设备驱动实例

I2c设备驱动(也称为客户驱动)是对I2c硬件体系结构中设备端的实现,我们这里是AT24C02的I2c设备驱动,设备一般挂接在受CPU控制的I2c适配器上,通过I2c适配器与CPU交换数据。

drivers/misc/eeprom/at24.c文件支持大多数I2C接口的EEPROM,正如我们前面所述,一个具体的I2C设备驱动有两部分组成,一部分是i2c_driver,用于将设备挂接于I2C总线,一部分是设备本身的驱动。对于EEPROM而言,设备本身的驱动以bin_attribute二进制sysfs结点形式呈现。代码清单37给出了该驱动的框架。

代码清单37 at24_bin_read()函数

1. static ssize_t at24_bin_read(struct file *filp, struct kobject *kobj,

2. struct bin_attribute *attr,

3. char *buf, loff_t off, size_t count)

4. {

5. struct at24_data *at24;

6.

7. at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));

8. return at24_read(at24, buf, off, count);

9. }

代码清单38 at24_bin_write()函数

1. /*

2. * Note that if the hardware write-protect pin is pulled high, the whole

3. * chip is normally write protected. But there are plenty of product

4. * variants here, including OTP fuses and partial chip protect.

5. *

6. * We only use page mode writes; the alternative is sloooow. This routine

7. * writes at most one page.

8. */

9. static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,

10. unsigned offset, size_t count)

11. {

12. struct i2c_client *client;

13. struct i2c_msg msg;

14. ssize_t status;

15. unsigned long timeout, write_time;

16. unsigned next_page;

17.

18. /* Get corresponding I2C address and adjust offset */

19. client = at24_translate_offset(at24, &offset);

20.

21. /* write_max is at most a page */

22. if (count > at24->write_max)

23. count = at24->write_max;

24.

25. /* Never roll over backwards, to the start of this page */

26. next_page = roundup(offset + 1, at24->chip.page_size);

27. if (offset + count > next_page)

28. count = next_page - offset;

29.

30. /* If we'll use I2C calls for I/O, set up the message */

31. if (!at24->use_smbus) {

32. int i = 0;

33.

34. msg.addr = client->addr;

35. msg.flags = 0;

36.

37. /* msg.buf is u8 and casts will mask the values */

38. msg.buf = at24->writebuf;

39. if (at24->chip.flags & AT24_FLAG_ADDR16)

40. msg.buf[i++] = offset >> 8;

41.

42. msg.buf[i++] = offset;

43. memcpy(&msg.buf[i], buf, count);

44. msg.len = i + count;

45. }

46.

47. /*

48. * Writes fail if the previous one didn't complete yet. We may

49. * loop a few times until this one succeeds, waiting at least

50. * long enough for one entire page write to work.

51. */

52. timeout = jiffies + msecs_to_jiffies(write_timeout);

53. do {

54. write_time = jiffies;

55. if (at24->use_smbus) {

56. status = i2c_smbus_write_i2c_block_data(client,

57. offset, count, buf);

58. if (status == 0)

59. status = count;

60. } else {

61. status = i2c_transfer(client->adapter, &msg, 1);

62. if (status == 1)

63. status = count;

64. }

65. dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",

66. count, offset, status, jiffies);

67.

68. if (status == count)

69. return count;

70.

71. /* REVISIT: at HZ=100, this is sloooow */

72. msleep(1);

73. } while (time_before(write_time, timeout));

74.

75. return -ETIMEDOUT;

76. }

代码清单39 i2c_device_id结构体

1. static const struct i2c_device_id at24_ids[] = {

2. /* needs 8 addresses as A0-A2 are ignored */

3. { "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },

4. /* old variants can't be handled with this generic entry! */

5. { "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },

6. { "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },

7. /* spd is a 24c02 in memory DIMMs */

8. { "spd", AT24_DEVICE_MAGIC(2048 / 8,

9. AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },

10. { "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },

11. /* 24rf08 quirk is handled at i2c-core */

12. { "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },

13. { "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },

14. { "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },

15. { "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },

16. { "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },

17. { "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },

18. { "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },

19. { "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },

20. { "at24", 0 },

21. { /* END OF LIST */ }

22. };

23. MODULE_DEVICE_TABLE(i2c, at24_ids);

代码清单40 初始化at24xx设备的i2c_driver结构体

1. /*-------------------------------------------------------------------------*/

2.

3. static struct i2c_driver at24_driver = {

4. .driver = {

5. .name = "at24",

6. .owner = THIS_MODULE,

7. },

8. .probe = at24_probe,

9. .remove = __devexit_p(at24_remove),

10. .id_table = at24_ids,

11. };

代码清单41 at24_probe函数

1. static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)

2. {

3. struct at24_platform_data chip;

4. bool writable;

5. int use_smbus = 0;

6. struct at24_data *at24;

7. int err;

8. unsigned i, num_addresses;

9. kernel_ulong_t magic;

10.

11. if (client->dev.platform_data) {

12. chip = *(struct at24_platform_data *)client->dev.platform_data;

13. } else {

14. if (!id->driver_data) {

15. err = -ENODEV;

16. goto err_out;

17. }

18. magic = id->driver_data;

19. chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));

20. magic >>= AT24_SIZE_BYTELEN;

21. chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);

22. /*

23. * This is slow, but we can't know all eeproms, so we better

24. * play safe. Specifying custom eeprom-types via platform_data

25. * is recommended anyhow.

26. */

27. chip.page_size = 1;

28.

29. /* update chipdata if OF is present */

30. at24_get_ofdata(client, &chip);

31.

32. chip.setup = NULL;

33. chip.context = NULL;

34. }

35.

36. if (!is_power_of_2(chip.byte_len))

37. dev_warn(&client->dev,

38. "byte_len looks suspicious (no power of 2)!\n");

39. if (!chip.page_size) {

40. dev_err(&client->dev, "page_size must not be 0!\n");

41. err = -EINVAL;

42. goto err_out;

43. }

44. if (!is_power_of_2(chip.page_size))

45. dev_warn(&client->dev,

46. "page_size looks suspicious (no power of 2)!\n");

47.

48. /* Use I2C operations unless we're stuck with SMBus extensions. */

49. if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {

50. if (chip.flags & AT24_FLAG_ADDR16) {

51. err = -EPFNOSUPPORT;

52. goto err_out;

53. }

54. if (i2c_check_functionality(client->adapter,

55. I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {

56. use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;

57. } else if (i2c_check_functionality(client->adapter,

58. I2C_FUNC_SMBUS_READ_WORD_DATA)) {

59. use_smbus = I2C_SMBUS_WORD_DATA;

60. } else if (i2c_check_functionality(client->adapter,

61. I2C_FUNC_SMBUS_READ_BYTE_DATA)) {

62. use_smbus = I2C_SMBUS_BYTE_DATA;

63. } else {

64. err = -EPFNOSUPPORT;

65. goto err_out;

66. }

67. }

68.

69. if (chip.flags & AT24_FLAG_TAKE8ADDR)

70. num_addresses = 8;

71. else

72. num_addresses = DIV_ROUND_UP(chip.byte_len,

73. (chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);

74.

75. at24 = kzalloc(sizeof(struct at24_data) +

76. num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);

77. if (!at24) {

78. err = -ENOMEM;

79. goto err_out;

80. }

81.

82. mutex_init(&at24->lock);

83. at24->use_smbus = use_smbus;

84. at24->chip = chip;

85. at24->num_addresses = num_addresses;

86.

87. /*

88. * Export the EEPROM bytes through sysfs, since that's convenient.

89. * By default, only root should see the data (maybe passwords etc)

90. */

91. sysfs_bin_attr_init(&at24->bin);

92. at24->bin.attr.name = "eeprom";

93. at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;

94. at24->bin.read = at24_bin_read;

95. at24->bin.size = chip.byte_len;

96.

97. at24->macc.read = at24_macc_read;

98.

99. writable = !(chip.flags & AT24_FLAG_READONLY);

100. if (writable) {

101. if (!use_smbus || i2c_check_functionality(client->adapter,

102. I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {

103.

104. unsigned write_max = chip.page_size;

105.

106. at24->macc.write = at24_macc_write;

107.

108. at24->bin.write = at24_bin_write;

109. at24->bin.attr.mode |= S_IWUSR;

110.

111. if (write_max > io_limit)

112. write_max = io_limit;

113. if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)

114. write_max = I2C_SMBUS_BLOCK_MAX;

115. at24->write_max = write_max;

116.

117. /* buffer (data + address at the beginning) */

118. at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL);

119. if (!at24->writebuf) {

120. err = -ENOMEM;

121. goto err_struct;

122. }

123. } else {

124. dev_warn(&client->dev,

125. "cannot write due to controller restrictions.");

126. }

127. }

128.

129. at24->client[0] = client;

130.

131. /* use dummy devices for multiple-address chips */

132. for (i = 1; i < num_addresses; i++) {

133. at24->client[i] = i2c_new_dummy(client->adapter,

134. client->addr + i);

135. if (!at24->client[i]) {

136. dev_err(&client->dev, "address 0x%02x unavailable\n",

137. client->addr + i);

138. err = -EADDRINUSE;

139. goto err_clients;

140. }

141. }

142. err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);

143. if (err)

144. goto err_clients;

145.

146. i2c_set_clientdata(client, at24);

147.

148. dev_info(&client->dev, "%zu byte %s EEPROM, %s, %u bytes/write\n",

149. at24->bin.size, client->name,

150. writable ? "writable" : "read-only", at24->write_max);

151. if (use_smbus == I2C_SMBUS_WORD_DATA ||

152. use_smbus == I2C_SMBUS_BYTE_DATA) {

153. dev_notice(&client->dev, "Falling back to %s reads, "

154. "performance will suffer\n", use_smbus ==

155. I2C_SMBUS_WORD_DATA ? "word" : "byte");

156. }

157.

158. /* export data to kernel code */

159. if (chip.setup)

160. chip.setup(&at24->macc, chip.context);

161.

162. return 0;

163.

164. err_clients:

165. for (i = 1; i < num_addresses; i++)

166. if (at24->client[i])

167. i2c_unregister_device(at24->client[i]);

168.

169. kfree(at24->writebuf);

170. err_struct:

171. kfree(at24);

172. err_out:

173. dev_dbg(&client->dev, "probe error %d\n", err);

174. return err;

175. }

176.

177. 代码清单42 at24_remove函数

178. static int __devexit at24_remove(struct i2c_client *client)

179. {

180. struct at24_data *at24;

181. int i;

182.

183. at24 = i2c_get_clientdata(client);

184. sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);

185.

186. for (i = 1; i < at24->num_addresses; i++)

187. i2c_unregister_device(at24->client[i]);

188.

189. kfree(at24->writebuf);

190. kfree(at24);

191. return 0;

192. }

代码清单43 at24xx设备驱动模块的加载和卸载函数

1. static int __init at24_init(void)

2. {

3. if (!io_limit) {

4. pr_err("at24: io_limit must not be 0!\n");

5. return -EINVAL;

6. }

7.

8. io_limit = rounddown_pow_of_two(io_limit);

9. return i2c_add_driver(&at24_driver);

10. }

11. module_init(at24_init);

12.

13. static void __exit at24_exit(void)

14. {

15. i2c_del_driver(&at24_driver);

16. }

17. module_exit(at24_exit);

18.

19. MODULE_DESCRIPTION("Driver for most I2C EEPROMs");

20. MODULE_AUTHOR("David Brownell and Wolfram Sang");

21. MODULE_LICENSE("GPL");

At24_bin_read()和at24_bin_write()俩个函数是EEPROM驱动本身的读写实现即bin_attribute驱动,之后一部分是i2c_driver,两者在i2c_driver的probe()、remove函数中建立关联。I2c_driver的probe()函数中的初始化并通过sysfs_create_bin_file()注册了二进制sysfs结点,而remove()函数则通过sysfs_remove_bin_file()注销了sysfs结点。
6.添加板级信息

drivers/misc/eeprom/at24.c不依赖于具体的CPU和I2C控制寄存器硬件特性,因此,如果某一电路板包含该外设,只需要在板文件中添加对应的i2c_board_info,如对于s3c2440要使其支持at24c02 eeprom只需要作如下工作:

首先是要在内核中注册板级信息,因为设备和驱动需要匹配,它们是通过设备名和驱动名进行匹配的。因为AT24C02芯片是由2048bits构成,所以有2048 / 8 = 256byte,并将其分成32页每页有8byte大小,是8bits寻址,如果AT24C02芯片的A0,A1,A2,这三个引脚接地,着AT24C02芯片从地址是01010000b(即0x50),如果AT24C02芯片的A0结高电平,A1,A2两个引脚接地,着AT24C02芯片从地址是01010001b(即0x51),这些都是AT24C02的datasheet上有的,不同芯片不同情况。下面在linux-3.0/arch/arm/mach-s3c2440/mach-smdk2440.c添加AT24C02设备的板级信息如下:

1. [fulinux@ubuntu linux-3.0]$ vim arch/arm/mach-s3c2440/mach-smdk2440.c

2. #include <linux/i2c.h>

3. #include <linux/i2c/at24.h>

4.

5. static struct at24_platform_data at24c02= {

6. .byte_len = SZ_2K / 8,

7. .page_size = 8,

8. .flags = AT24_FLAG_ADDR8,

9. };

10.

11. static struct i2c_board_info __initdata smdk2440_i2c_devs[] = {

12. {

13. I2C_BOARD_INFO("24c02", 0x50),

14. .platform_data = &at24c02,

15. },

16. /* more devices can be added using expansion connectors */

17. };

********************************************************************************************

装载声明:希望大家能转载此文谢谢:原文链接
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  linux