您的位置:首页 > 运维架构

【OpenCV】SIFT原理与源码分析:4.关键点描述

2015-05-13 13:24 483 查看
转自:/article/1357501.html

由前一篇《方向赋值》,为找到的关键点即SIFT特征点赋了值,包含位置、尺度和方向的信息。接下来的步骤是关键点描述,即用用一组向量将这个关键点描述出来,这个描述子不但包括关键点,也包括关键点周围对其有贡献的像素点。用来作为目标匹配的依据(所以描述子应该有较高的独特性,以保证匹配率),也可使关键点具有更多的不变特性,如光照变化、3D视点变化等。

SIFT描述子h(x,y,θ)是对关键点附近邻域内高斯图像梯度统计的结果,是一个三维矩阵,但通常用一个矢量来表示。矢量通过对三维矩阵按一定规律排列得到。


描述子采样区域

特征描述子与关键点所在尺度有关,因此对梯度的求取应在特征点对应的高斯图像上进行。将关键点附近划分成d×d个子区域,每个子区域尺寸为mσ个像元(d=4,m=3,σ为尺特征点的尺度值)。考虑到实际计算时需要双线性插值,故计算的图像区域为mσ(d+1),再考虑旋转,则实际计算的图像区域为

,如下图所示:




源码

[cpp] view
plaincopy





Point pt(cvRound(ptf.x), cvRound(ptf.y));

//计算余弦,正弦,CV_PI/180:将角度值转化为幅度值

float cos_t = cosf(ori*(float)(CV_PI/180));

float sin_t = sinf(ori*(float)(CV_PI/180));

float bins_per_rad = n / 360.f;

float exp_scale = -1.f/(d * d * 0.5f); //d:SIFT_DESCR_WIDTH 4

float hist_width = SIFT_DESCR_SCL_FCTR * scl; // SIFT_DESCR_SCL_FCTR: 3

// scl: size*0.5f

// 计算图像区域半径mσ(d+1)/2*sqrt(2)

// 1.4142135623730951f 为根号2

int radius = cvRound(hist_width * 1.4142135623730951f * (d + 1) * 0.5f);

cos_t /= hist_width;

sin_t /= hist_width;


区域坐标轴旋转

为了保证特征矢量具有旋转不变性,要以特征点为中心,在附近邻域内旋转θ角,即旋转为特征点的方向。



旋转后区域内采样点新的坐标为:




源码

[cpp] view
plaincopy





//计算采样区域点坐标旋转

for( i = -radius, k = 0; i <= radius; i++ )

for( j = -radius; j <= radius; j++ )

{

/*

Calculate sample's histogram array coords rotated relative to ori.

Subtract 0.5 so samples that fall e.g. in the center of row 1 (i.e.

r_rot = 1.5) have full weight placed in row 1 after interpolation.

*/

float c_rot = j * cos_t - i * sin_t;

float r_rot = j * sin_t + i * cos_t;

float rbin = r_rot + d/2 - 0.5f;

float cbin = c_rot + d/2 - 0.5f;

int r = pt.y + i, c = pt.x + j;

if( rbin > -1 && rbin < d && cbin > -1 && cbin < d &&

r > 0 && r < rows - 1 && c > 0 && c < cols - 1 )

{

float dx = (float)(img.at<short>(r, c+1) - img.at<short>(r, c-1));

float dy = (float)(img.at<short>(r-1, c) - img.at<short>(r+1, c));

X[k] = dx; Y[k] = dy; RBin[k] = rbin; CBin[k] = cbin;

W[k] = (c_rot * c_rot + r_rot * r_rot)*exp_scale;

k++;

}

}


计算采样区域梯度直方图

将旋转后区域划分为d×d个子区域(每个区域间隔为mσ像元),在子区域内计算8个方向的梯度直方图,绘制每个方向梯度方向的累加值,形成一个种子点。

与求主方向不同的是,此时,每个子区域梯度方向直方图将0°~360°划分为8个方向区间,每个区间为45°。即每个种子点有8个方向区间的梯度强度信息。由于存在d×d,即4×4个子区域,所以最终共有4×4×8=128个数据,形成128维SIFT特征矢量。



对特征矢量需要加权处理,加权采用mσd/2的标准高斯函数。为了除去光照变化影响,还有一步归一化处理。


源码

[cpp] view
plaincopy





//计算梯度直方图

for( k = 0; k < len; k++ )

{

float rbin = RBin[k], cbin = CBin[k];

float obin = (Ori[k] - ori)*bins_per_rad;

float mag = Mag[k]*W[k];

int r0 = cvFloor( rbin );

int c0 = cvFloor( cbin );

int o0 = cvFloor( obin );

rbin -= r0;

cbin -= c0;

obin -= o0;

//n为SIFT_DESCR_HIST_BINS:8,即将360°分为8个区间

if( o0 < 0 )

o0 += n;

if( o0 >= n )

o0 -= n;

// histogram update using tri-linear interpolation

// 双线性插值

float v_r1 = mag*rbin, v_r0 = mag - v_r1;

float v_rc11 = v_r1*cbin, v_rc10 = v_r1 - v_rc11;

float v_rc01 = v_r0*cbin, v_rc00 = v_r0 - v_rc01;

float v_rco111 = v_rc11*obin, v_rco110 = v_rc11 - v_rco111;

float v_rco101 = v_rc10*obin, v_rco100 = v_rc10 - v_rco101;

float v_rco011 = v_rc01*obin, v_rco010 = v_rc01 - v_rco011;

float v_rco001 = v_rc00*obin, v_rco000 = v_rc00 - v_rco001;

int idx = ((r0+1)*(d+2) + c0+1)*(n+2) + o0;

hist[idx] += v_rco000;

hist[idx+1] += v_rco001;

hist[idx+(n+2)] += v_rco010;

hist[idx+(n+3)] += v_rco011;

hist[idx+(d+2)*(n+2)] += v_rco100;

hist[idx+(d+2)*(n+2)+1] += v_rco101;

hist[idx+(d+3)*(n+2)] += v_rco110;

hist[idx+(d+3)*(n+2)+1] += v_rco111;

}

关键点描述源码

[cpp] view
plaincopy





// SIFT关键点特征描述

// SIFT描述子是关键点领域高斯图像提取统计结果的一种表示

static void calcSIFTDescriptor( const Mat& img, Point2f ptf, float ori, float scl,

int d, int n, float* dst )

{

Point pt(cvRound(ptf.x), cvRound(ptf.y));

//计算余弦,正弦,CV_PI/180:将角度值转化为幅度值

float cos_t = cosf(ori*(float)(CV_PI/180));

float sin_t = sinf(ori*(float)(CV_PI/180));

float bins_per_rad = n / 360.f;

float exp_scale = -1.f/(d * d * 0.5f); //d:SIFT_DESCR_WIDTH 4

float hist_width = SIFT_DESCR_SCL_FCTR * scl; // SIFT_DESCR_SCL_FCTR: 3

// scl: size*0.5f

// 计算图像区域半径mσ(d+1)/2*sqrt(2)

// 1.4142135623730951f 为根号2

int radius = cvRound(hist_width * 1.4142135623730951f * (d + 1) * 0.5f);

cos_t /= hist_width;

sin_t /= hist_width;

int i, j, k, len = (radius*2+1)*(radius*2+1), histlen = (d+2)*(d+2)*(n+2);

int rows = img.rows, cols = img.cols;

AutoBuffer<float> buf(len*6 + histlen);

float *X = buf, *Y = X + len, *Mag = Y, *Ori = Mag + len, *W = Ori + len;

float *RBin = W + len, *CBin = RBin + len, *hist = CBin + len;

//初始化直方图

for( i = 0; i < d+2; i++ )

{

for( j = 0; j < d+2; j++ )

for( k = 0; k < n+2; k++ )

hist[(i*(d+2) + j)*(n+2) + k] = 0.;

}

//计算采样区域点坐标旋转

for( i = -radius, k = 0; i <= radius; i++ )

for( j = -radius; j <= radius; j++ )

{

/*

Calculate sample's histogram array coords rotated relative to ori.

Subtract 0.5 so samples that fall e.g. in the center of row 1 (i.e.

r_rot = 1.5) have full weight placed in row 1 after interpolation.

*/

float c_rot = j * cos_t - i * sin_t;

float r_rot = j * sin_t + i * cos_t;

float rbin = r_rot + d/2 - 0.5f;

float cbin = c_rot + d/2 - 0.5f;

int r = pt.y + i, c = pt.x + j;

if( rbin > -1 && rbin < d && cbin > -1 && cbin < d &&

r > 0 && r < rows - 1 && c > 0 && c < cols - 1 )

{

float dx = (float)(img.at<short>(r, c+1) - img.at<short>(r, c-1));

float dy = (float)(img.at<short>(r-1, c) - img.at<short>(r+1, c));

X[k] = dx; Y[k] = dy; RBin[k] = rbin; CBin[k] = cbin;

W[k] = (c_rot * c_rot + r_rot * r_rot)*exp_scale;

k++;

}

}

len = k;

fastAtan2(Y, X, Ori, len, true);

magnitude(X, Y, Mag, len);

exp(W, W, len);

//计算梯度直方图

for( k = 0; k < len; k++ )

{

float rbin = RBin[k], cbin = CBin[k];

float obin = (Ori[k] - ori)*bins_per_rad;

float mag = Mag[k]*W[k];

int r0 = cvFloor( rbin );

int c0 = cvFloor( cbin );

int o0 = cvFloor( obin );

rbin -= r0;

cbin -= c0;

obin -= o0;

//n为SIFT_DESCR_HIST_BINS:8,即将360°分为8个区间

if( o0 < 0 )

o0 += n;

if( o0 >= n )

o0 -= n;

// histogram update using tri-linear interpolation

// 双线性插值

float v_r1 = mag*rbin, v_r0 = mag - v_r1;

float v_rc11 = v_r1*cbin, v_rc10 = v_r1 - v_rc11;

float v_rc01 = v_r0*cbin, v_rc00 = v_r0 - v_rc01;

float v_rco111 = v_rc11*obin, v_rco110 = v_rc11 - v_rco111;

float v_rco101 = v_rc10*obin, v_rco100 = v_rc10 - v_rco101;

float v_rco011 = v_rc01*obin, v_rco010 = v_rc01 - v_rco011;

float v_rco001 = v_rc00*obin, v_rco000 = v_rc00 - v_rco001;

int idx = ((r0+1)*(d+2) + c0+1)*(n+2) + o0;

hist[idx] += v_rco000;

hist[idx+1] += v_rco001;

hist[idx+(n+2)] += v_rco010;

hist[idx+(n+3)] += v_rco011;

hist[idx+(d+2)*(n+2)] += v_rco100;

hist[idx+(d+2)*(n+2)+1] += v_rco101;

hist[idx+(d+3)*(n+2)] += v_rco110;

hist[idx+(d+3)*(n+2)+1] += v_rco111;

}

// finalize histogram, since the orientation histograms are circular

// 最后确定直方图,目标方向直方图是圆的

for( i = 0; i < d; i++ )

for( j = 0; j < d; j++ )

{

int idx = ((i+1)*(d+2) + (j+1))*(n+2);

hist[idx] += hist[idx+n];

hist[idx+1] += hist[idx+n+1];

for( k = 0; k < n; k++ )

dst[(i*d + j)*n + k] = hist[idx+k];

}

// copy histogram to the descriptor,

// apply hysteresis thresholding

// and scale the result, so that it can be easily converted

// to byte array

float nrm2 = 0;

len = d*d*n;

for( k = 0; k < len; k++ )

nrm2 += dst[k]*dst[k];

float thr = std::sqrt(nrm2)*SIFT_DESCR_MAG_THR;

for( i = 0, nrm2 = 0; i < k; i++ )

{

float val = std::min(dst[i], thr);

dst[i] = val;

nrm2 += val*val;

}

nrm2 = SIFT_INT_DESCR_FCTR/std::max(std::sqrt(nrm2), FLT_EPSILON);

for( k = 0; k < len; k++ )

{

dst[k] = saturate_cast<uchar>(dst[k]*nrm2);

}

}

至此SIFT描述子生成,SIFT算法也基本完成了~

(转载请注明作者和出处:http://blog.csdn.net/xiaowei_cqu 未经允许请勿用于商业用途)
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: