您的位置:首页 > 其它

算法时间复杂度的计算

2015-03-29 19:45 218 查看
基本的计算步骤

时间复杂度的定义


一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度。

根据定义,可以归纳出基本的计算步骤

1. 计算出基本操作的执行次数T(n)

基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。

2. 计算出T(n)的数量级

求T(n)的数量级,只要将T(n)进行如下一些操作:

忽略常量、低次幂和最高次幂的系数

令f(n)=T(n)的数量级。

3. 用大O来表示时间复杂度

当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。

一个示例:

(1) int num1, num2;

(2) for(int i=0; i<n; i++){

(3) num1 += 1;

(4) for(int j=1; j<=n; j*=2){

(5) num2 += num1;

(6) }

(7) }

分析:

1.

语句int num1, num2;的频度为1;

语句i=0;的频度为1;

语句i<n; i++; num1+=1; j=1; 的频度为n;

语句j<=n; j*=2; num2+=num1;的频度为n*log2n;

T(n) = 2 + 4n + 3n*log2n

2.

忽略掉T(n)中的常量、低次幂和最高次幂的系数

f(n) = n*log2n

3.

lim(T(n)/f(n)) = (2+4n+3n*log2n) / (n*log2n)

= 2*(1/n)*(1/log2n) + 4*(1/log2n) + 3

当n趋向于无穷大,1/n趋向于0,1/log2n趋向于0

所以极限等于3。

T(n) = O(n*log2n)

简化的计算步骤

再来分析一下,可以看出,决定算法复杂度的是执行次数最多的语句,这里是num2 += num1,一般也是最内循环的语句。

并且,通常将求解极限是否为常量也省略掉?

于是,以上步骤可以简化为:

1. 找到执行次数最多的语句

2. 计算语句执行次数的数量级

3. 用大O来表示结果

继续以上述算法为例,进行分析:

1.

执行次数最多的语句为num2 += num1

2.

T(n) = n*log2n

f(n) = n*log2n

3.

// lim(T(n)/f(n)) = 1

T(n) = O(n*log2n)



--------------------------------------------------------------------------------

一些补充说明

最坏时间复杂度

算法的时间复杂度不仅与语句频度有关,还与问题规模及输入实例中各元素的取值有关。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。这就保证了算法的运行时间不会比任何更长。

求数量级

即求对数值(log),默认底数为10,简单来说就是“一个数用标准科学计数法表示后,10的指数”。例如,5000=5x10 3 (log5000=3) ,数量级为3。另外,一个未知数的数量级为其最接近的数量级,即最大可能的数量级。

求极限的技巧

要利用好1/n。当n趋于无穷大时,1/n趋向于0

--------------------------------------------------------------------------------

一些规则(引自:时间复杂度计算 )

1) 加法规则

T(n,m) = T1(n) + T2(n) = O (max ( f(n), g(m) )

2) 乘法规则

T(n,m) = T1(n) * T2(m) = O (f(n) * g(m))

3) 一个特例(问题规模为常量的时间复杂度)

在大O表示法里面有一个特例,如果T1(n) = O(c), c是一个与n无关的任意常数,T2(n) = O ( f(n) ) 则有

T(n) = T1(n) * T2(n) = O ( c*f(n) ) = O( f(n) )

也就是说,在大O表示法中,任何非0正常数都属于同一数量级,记为O(1)。

4) 一个经验规则

复杂度与时间效率的关系:

c < log2n < n < n*log2n < n2 < n3 < 2n < 3n < n! (c是一个常量)

|--------------------------|--------------------------|-------------|

较好 一般 较差

其中c是一个常量,如果一个算法的复杂度为c 、 log2n 、n 、 n*log2n,那么这个算法时间效率比较高 ,如果是 2n , 3n ,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意。

--------------------------------------------------------------------------------------------------

复杂情况的分析

以上都是对于单个嵌套循环的情况进行分析,但实际上还可能有其他的情况,下面将例举说明。

1.并列循环的复杂度分析

将各个嵌套循环的时间复杂度相加。

例如:

  for (i=1; i<=n; i++)

   x++;

  for (i=1; i<=n; i++)

   for (j=1; j<=n; j++)

   x++;

解:

第一个for循环

T(n) = n

f(n) = n

时间复杂度为Ο(n)

第二个for循环

T(n) = n2

f(n) = n2

时间复杂度为Ο(n2)

整个算法的时间复杂度为Ο(n+n2) = Ο(n2)。

2.函数调用的复杂度分析

例如:

public void printsum(int count){

int sum = 1;

for(int i= 0; i<n; i++){

sum += i;

}

System.out.print(sum);

}

分析:

记住,只有可运行的语句才会增加时间复杂度,因此,上面方法里的内容除了循环之外,其余的可运行语句的复杂度都是O(1)。

所以printsum的时间复杂度 = for的O(n)+O(1) = 忽略常量 = O(n)

*这里其实可以运用公式 num = n*(n+1)/2,对算法进行优化,改为:

public void printsum(int count){

int sum = 1;

sum = count * (count+1)/2;

System.out.print(sum);

}

这样算法的时间复杂度将由原来的O(n)降为O(1),大大地提高了算法的性能。

3.混合情况(多个方法调用与循环)的复杂度分析

例如:

public void suixiangMethod(int n){

printsum(n);//1.1

for(int i= 0; i<n; i++){

printsum(n); //1.2

}

for(int i= 0; i<n; i++){

for(int k=0; k

System.out.print(i,k); //1.3

}

}

suixiangMethod 方法的时间复杂度需要计算方法体的各个成员的复杂度。

也就是1.1+1.2+1.3 = O(1)+O(n)+O(n2) ----> 忽略常数 和 非主要项 == O(n2)

--------------------------------------------------------------------------------------------------

更多的例子

O(1)

交换i和j的内容

temp=i;

i=j;

j=temp;

以上三条单个语句的频度为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

O(n2)

sum=0; /* 执行次数1 */

for(i=1;i<=n;i++)

for(j=1;j<=n;j++)

sum++; /* 执行次数n2 */

解:T(n) = 1 + n2 = O(n2)

for (i=1;i<n;i++)

{

y=y+1; ①

for (j=0;j<=(2*n);j++)

x++; ②

}

解: 语句1的频度是n-1

语句2的频度是(n-1)*(2n+1) = 2n2-n-1

T(n) = 2n2-n-1+(n-1) = 2n2-2

f(n) = n2

lim(T(n)/f(n)) = 2 + 2*(1/n2) = 2

T(n) = O(n2).

O(n)

a=0;

b=1; ①

for (i=1;i<=n;i++) ②

{

s=a+b;    ③

b=a;     ④

a=s;     ⑤

}

解: 语句1的频度:2,

语句2的频度:n,

语句3的频度:n,

语句4的频度:n,

语句5的频度:n,

T(n) = 2+4n

f(n) = n

lim(T(n)/f(n)) = 2*(1/n) + 4 = 4

T(n) = O(n).



O(log2n)

i=1; ①

while (i<=n)

i=i*2; ②

解: 语句1的频度是1,

设语句2的频度是t, 则:nt<=n; t<=log2n

考虑最坏情况,取最大值t=log2n,

T(n) = 1 + log2n

f(n) = log2n

lim(T(n)/f(n)) = 1/log2n + 1 = 1

T(n) = O(log2n)

O(n3)

for(i=0;i<n;i++)

{

for(j=0;j<i;j++)

{

for(k=0;k<j;k++)

x=x+2;

}

}

解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/2次

T(n) = n(n+1)(n-1)/2 = (n3-n)/2

f(n) = n3

所以时间复杂度为O(n3)。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: