您的位置:首页 > 其它

SurfaceFlinger启动过程分析(一)、(二)、(三)、(四)【转】

2015-02-27 15:46 288 查看
SurfaceFlinger的启动过程还是从Zygote说起。Zygote起来后会调用SystemServer.java[frameworks/base/services/java/com/android/server]里面的main函数,然后调用本地函数init1(),然后调用的是JNI的com_android_server_SystemServer.cpp里面的android_server_SystemServer_init1函数。

static void android_server_SystemServer_init1(JNIEnv* env, jobject
clazz)

{

system_init();

}

然后调用

System_init.cpp[frameworks/base/cmds/system_server/library]的system_init函数,通过获取属性字段system_init.startsurfaceflinger,如果字段值为1,那么就在这里启动surfaceflinger。

char propBuf[PROPERTY_VALUE_MAX];

property_get("system_init.startsurfaceflinger", propBuf, "1");

if (strcmp(propBuf, "1") == 0) {

// Start the SurfaceFlinger

SurfaceFlinger::instantiate();

}

然而,另一方面,有一个可执行文件surfaceflinger,由目录framework/base/cmds/surfaceflinger编译产生,目录下的主要文件main_surfaceflinger.cpp里面就一个main函数:

int main(int argc, char** argv)

{

sp<ProcessState> proc(ProcessState::self());

sp<IServiceManager> sm = defaultServiceManager();

LOGI("ServiceManager: %p", sm.get());

SurfaceFlinger::instantiate();

ProcessState::self()->startThreadPool();

IPCThreadState::self()->joinThreadPool();

}

以上两者都会调用SurfaceFlinger.cpp文件的instantiate函数。

void SurfaceFlinger::instantiate() {

defaultServiceManager()->addService(

String16("SurfaceFlinger"), new SurfaceFlinger());

}

如果你想在可执行文件中启动SurfaceFlinger,那么你可以在init.rc文件中增加类似如下语句:

service surfaceflinger /system/bin/surfaceflinger

user root

onrestart restart zygote

disabled
当然你也必须设置属性字段system_init.startsurfaceflinger为0,这个工作可以在init.rc中完成。

setprop system_init.startsurfaceflinger
0
surfaceflinger构造函数调用init()函数【surfaceflinger.cpp】,init函数主要打印"SurfaceFlinger is starting"的Log信息,并且对一些debug属性进行配置。

surfaceflinger构造函数调用readyToRun函数【surfaceflinger.cpp】,至于为什么会调用readyToRun函数(并没有显式的调用语句),主要是因为surfaceflinger是一个线程类,必须实现并会调用如下两个函数:一是readyToRun(),该函数定义了线程循环前需要初始化的内容;二是threadLoop(),每个线程都必须实现,该函数定义了线程执行的内容,如果该函数返回true,线程会继续调用threadLoop(),如果返回false,线程将退出。-->选自参考文献。

关于readyToRun将在下节分析


SurfaceFlinger启动过程分析(二)

上节说到SurfaceFlinger的readyToRun函数。先来看看它的代码:

(Google Android 2.2)

SurfaceFlinger.cpp

status_t SurfaceFlinger::readyToRun()

{

LOGI( "SurfaceFlinger's main thread ready to run. "

"Initializing graphics H/W...");

// we only support one display currently

int dpy = 0;

{

// initialize the main display

GraphicPlane& plane(graphicPlane(dpy));

DisplayHardware* const hw = new DisplayHardware(this, dpy);

plane.setDisplayHardware(hw);

}

// create the shared control-block

mServerHeap = new MemoryHeapBase(4096,

MemoryHeapBase::READ_ONLY, "SurfaceFlinger
read-only heap");

LOGE_IF(mServerHeap==0, "can't
create shared memory dealer");

mServerCblk = static_cast<surface_flinger_cblk_t*>(mServerHeap->getBase());

LOGE_IF(mServerCblk==0, "can't
get to shared control block's address");

new(mServerCblk) surface_flinger_cblk_t;

// initialize primary screen

// (other display should be initialized in the same manner, but

// asynchronously, as they could come and go. None of this is supported

// yet).

const GraphicPlane& plane(graphicPlane(dpy));

const DisplayHardware& hw = plane.displayHardware();

const uint32_t w = hw.getWidth();

const uint32_t h = hw.getHeight();

const uint32_t f = hw.getFormat();

hw.makeCurrent();

// initialize the shared control block

mServerCblk->connected |= 1<<dpy;

display_cblk_t* dcblk = mServerCblk->displays + dpy;

memset(dcblk, 0, sizeof(display_cblk_t));

dcblk->w = plane.getWidth();

dcblk->h = plane.getHeight();

dcblk->format = f;

dcblk->orientation = ISurfaceComposer::eOrientationDefault;

dcblk->xdpi = hw.getDpiX();

dcblk->ydpi = hw.getDpiY();

dcblk->fps = hw.getRefreshRate();

dcblk->density = hw.getDensity();

asm volatile ("":::"memory");

// Initialize OpenGL|ES

glActiveTexture(GL_TEXTURE0);

glBindTexture(GL_TEXTURE_2D, 0);

glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

glPixelStorei(GL_UNPACK_ALIGNMENT, 4);

glPixelStorei(GL_PACK_ALIGNMENT, 4);

glEnableClientState(GL_VERTEX_ARRAY);

glEnable(GL_SCISSOR_TEST);

glShadeModel(GL_FLAT);

glDisable(GL_DITHER);

glDisable(GL_CULL_FACE);

const uint16_t g0 = pack565(0x0F,0x1F,0x0F);

const uint16_t g1 = pack565(0x17,0x2f,0x17);

const uint16_t textureData[4] = { g0, g1, g1, g0 };

glGenTextures(1, &mWormholeTexName);

glBindTexture(GL_TEXTURE_2D, mWormholeTexName);

glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 2, 2, 0,

GL_RGB, GL_UNSIGNED_SHORT_5_6_5, textureData);

glViewport(0, 0, w, h);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glOrthof(0, w, h, 0, 0, 1);

LayerDim::initDimmer(this, w, h);

mReadyToRunBarrier.open();

/*

* We're now ready to accept clients...

*/

// start boot animation

property_set("ctl.start", "bootanim");

return NO_ERROR;

}
调用readyToRun函数用于初始化整个显示系统。

readyToRun()调用过程如下[这部分摘自网上资料]:

(1)执行new DisplayHardware(this,dpy),通过DisplayHardware初始化Framebuffer、EGL并获取OpenGL ES信息。

(2)创建共享的内存控制块。

(3)将EGL与当前屏幕绑定。

(4)初始化共享内存控制块。

(5)初始化OpenGL ES。

(6)显示开机动画。

上面的六点作为阅读代码的提纲及参考,下面对照代码进行分析:

(1)创建一个DisplayHardware,通过它的init函数去初始化Framebuffer、EGL并获取OpenGL ES信息。

DisplayHardware.cpp[frameworks/base/libs/surfaceflinger/displayhardware]

DisplayHardware::DisplayHardware(

const sp<SurfaceFlinger>& flinger,

uint32_t dpy)

: DisplayHardwareBase(flinger, dpy)

{

init(dpy);

}
init函数的代码狠长,我们一块一块,一句一句地分析:

void DisplayHardware::init(uint32_t dpy)

{

mNativeWindow = new FramebufferNativeWindow();

...
首先亮相的是第一句(如上),new一个FramebufferNativeWindow。

FramebufferNativeWindow构造函数的代码也不少,我们去掉一些次要的代码,挑重要的关键的说:

FramebufferNativeWindow::FramebufferNativeWindow()

: BASE(), fbDev(0), grDev(0), mUpdateOnDemand(false)

{

hw_module_t const* module;

if (hw_get_module(GRALLOC_HARDWARE_MODULE_ID, &module) == 0) {

int stride;

int err;

err = framebuffer_open(module, &fbDev);

LOGE_IF(err, "couldn't
open framebuffer HAL (%s)", strerror(-err));

err = gralloc_open(module, &grDev);

LOGE_IF(err, "couldn't
open gralloc HAL (%s)", strerror(-err));

// bail out if we can't initialize the modules

if (!fbDev || !grDev)

return;

mUpdateOnDemand = (fbDev->setUpdateRect != 0);

// initialize the buffer FIFO

mNumBuffers = 2;

mNumFreeBuffers = 2;

mBufferHead = mNumBuffers-1;

buffers[0] = new NativeBuffer(

fbDev->width, fbDev->height, fbDev->format, GRALLOC_USAGE_HW_FB);

buffers[1] = new NativeBuffer(

fbDev->width, fbDev->height, fbDev->format, GRALLOC_USAGE_HW_FB);

err = grDev->alloc(grDev,

fbDev->width, fbDev->height, fbDev->format,

GRALLOC_USAGE_HW_FB, &buffers[0]->handle, &buffers[0]->stride);

LOGE_IF(err, "fb
buffer 0 allocation failed w=%d, h=%d, err=%s",fbDev->width,fbDev->height, strerror(-err));

err = grDev->alloc(grDev,

fbDev->width, fbDev->height, fbDev->format,

GRALLOC_USAGE_HW_FB, &buffers[1]->handle, &buffers[1]->stride);

LOGE_IF(err, "fb
buffer 1 allocation failed w=%d, h=%d, err=%s",fbDev->width,fbDev->height, strerror(-err));

...

} else {

LOGE("Couldn't get gralloc module");

}

...

}
关键的代码都被我高亮了,从最后一行的else的LOGE中可以看出这里主要是获得gralloc这个模块。模块ID定义在:gralloc.h[hardware/libhardware/include/hardware]

#define GRALLOC_HARDWARE_MODULE_ID "gralloc"
ps:有时候代码中的log狠有用,可以帮助我们读懂代码,而且logcat也是我们调试代码的好东西。

首先打开framebuffer和gralloc这两个模块

framebuffer_open和gralloc_open这两个接口在gralloc.h里面定义

static inline int framebuffer_open(const struct hw_module_t* module,

struct framebuffer_device_t** device) {

return module->methods->open(module,

GRALLOC_HARDWARE_FB0, (struct hw_device_t**)device);

}

static inline int gralloc_open(const struct hw_module_t* module,

struct alloc_device_t** device) {

return module->methods->open(module,

GRALLOC_HARDWARE_GPU0, (struct hw_device_t**)device);

}
两者指定的是gralloc.cpp中同一个函数gralloc_device_open,但是用的是不同的设备名,函数名和设备名分别在gralloc.cpp和gralloc.h中定义。

gralloc.h[hardware/libhardware/include/hardware]

#define GRALLOC_HARDWARE_FB0 "fb0"

#define GRALLOC_HARDWARE_GPU0 "gpu0"

gralloc.cpp[hardware/libhardware/modules/gralloc]

static struct hw_module_methods_t gralloc_module_methods = {

open: gralloc_device_open

};
gralloc.cpp[hardware/libhardware/modules/gralloc]

int gralloc_device_open(const hw_module_t* module, const char* name,

hw_device_t** device)

{

int status = -EINVAL;

if (!strcmp(name, GRALLOC_HARDWARE_GPU0)) {

gralloc_context_t *dev;

dev = (gralloc_context_t*)malloc(sizeof(*dev));

/* initialize our state here */

memset(dev, 0, sizeof(*dev));

/* initialize the procs */

dev->device.common.tag = HARDWARE_DEVICE_TAG;

dev->device.common.version = 0;

dev->device.common.module = const_cast<hw_module_t*>(module);

dev->device.common.close = gralloc_close;

dev->device.alloc = gralloc_alloc;

dev->device.free = gralloc_free;

*device = &dev->device.common;

status = 0;

} else {

status = fb_device_open(module, name, device);

}

return status;

}

gralloc_device_open函数通过设备名字来进行相关的初始化工作。打开framebuffer则调用fb_device_open函数。fb_device_open函数定义在framebuffer.cpp中。

int fb_device_open(hw_module_t const* module, const char* name,

hw_device_t** device)

{

int status = -EINVAL;

if (!strcmp(name, GRALLOC_HARDWARE_FB0)) {

alloc_device_t* gralloc_device;

status = gralloc_open(module, &gralloc_device);

if (status < 0)

return status;

/* initialize our state here */

fb_context_t *dev = (fb_context_t*)malloc(sizeof(*dev));

memset(dev, 0, sizeof(*dev));

/* initialize the procs */

dev->device.common.tag = HARDWARE_DEVICE_TAG;

dev->device.common.version = 0;

dev->device.common.module = const_cast<hw_module_t*>(module);

dev->device.common.close = fb_close;

dev->device.setSwapInterval = fb_setSwapInterval;

dev->device.post = fb_post;

dev->device.setUpdateRect = 0;

private_module_t* m = (private_module_t*)module;

status = mapFrameBuffer(m);

if (status >= 0) {

...

*device = &dev->device.common;

}

}

return status;

}

fb_device_open函数是framebuffer.cpp里面的函数它会再次调用gralloc_open函数,调用gralloc_open并没有什么实际的用途,只是检测模块的正确性,感觉这句话没有必要,还是我哪里理解错了???因为gralloc_device这个变量在后面都没有用到啊。

哈哈,经过测试,把以下几句注释掉,然后make,烧到手机上,手机基本功能仍旧正常,看来这几句代码狠有可能是没有什么特别用处的。

alloc_device_t* gralloc_device;

status = gralloc_open(module, &gralloc_device);

if (status < 0)

return status;
然后调用mapFrameBuffer函数,就是将显示缓冲区映射到用户空间,这样在用户空间就可以直接对显示缓冲区进行读写操作。mapFrameBuffer函数的主体功能是在mapFrameBufferLocked函数里面完成的。

关于mapFrameBuffer函数,在下节讲解。


SurfaceFlinger启动过程分析(三)

内存映射对于framebuffer来说非常重要,因为通常用户是不能直接操作物理地址空间的(也就是物理内存?),然而通过mmap映射之后,将framebuffer的物理地址空间映射到用户空间的一段虚拟地址中,用户就可以通过操作这段虚拟内存而间接操作framebuffer了,你在那段虚拟内存中画了图,相应的图就会显示到屏幕上。

——这段是自己的理解,有错必究!

下面是framebuffer.cpp中的mapFrameBufferLocked函数。

int mapFrameBufferLocked(struct private_module_t* module)

{

// already initialized...

if (module->framebuffer) {

return 0;

}

char const * const device_template[] = {

"/dev/graphics/fb%u",

"/dev/fb%u",

0 };

int fd = -1;

int i=0;

char name[64];

while ((fd==-1) && device_template[i]) {

snprintf(name, 64, device_template[i], 0);

fd = open(name, O_RDWR, 0);

i++;

}

if (fd < 0)

return -errno;

struct fb_fix_screeninfo finfo;

if (ioctl(fd, FBIOGET_FSCREENINFO, &finfo) == -1)

return -errno;

struct fb_var_screeninfo info;

if (ioctl(fd, FBIOGET_VSCREENINFO, &info) == -1)

return -errno;

info.reserved[0] = 0;

info.reserved[1] = 0;

info.reserved[2] = 0;

info.xoffset = 0;

info.yoffset = 0;

info.activate = FB_ACTIVATE_NOW;

/*

* Explicitly request 5/6/5

*/

info.bits_per_pixel = 16;

info.red.offset = 11;

info.red.length = 5;

info.green.offset = 5;

info.green.length = 6;

info.blue.offset = 0;

info.blue.length = 5;

info.transp.offset = 0;

info.transp.length = 0;

/*

* Request NUM_BUFFERS screens (at lest 2 for page flipping)

*/

info.yres_virtual = info.yres * NUM_BUFFERS;

uint32_t flags = PAGE_FLIP;

if (ioctl(fd, FBIOPUT_VSCREENINFO, &info) == -1) {

info.yres_virtual = info.yres;

flags &= ~PAGE_FLIP;

LOGW("FBIOPUT_VSCREENINFO failed, page flipping not supported");

}

if (info.yres_virtual < info.yres * 2) {

// we need at least 2 for page-flipping

info.yres_virtual = info.yres;

flags &= ~PAGE_FLIP;

LOGW("page flipping not supported (yres_virtual=%d, requested=%d)",

info.yres_virtual, info.yres*2);

}

if (ioctl(fd, FBIOGET_VSCREENINFO, &info) == -1)

return -errno;

int refreshRate = 1000000000000000LLU /

(

uint64_t( info.upper_margin + info.lower_margin + info.yres )

* ( info.left_margin + info.right_margin + info.xres )

* info.pixclock

);

if (refreshRate == 0) {

// bleagh, bad info from the driver

refreshRate = 60*1000; //
60 Hz

}

if (int(info.width) <= 0 || int(info.height) <= 0) {

// the driver doesn't return that information

// default to 160 dpi

info.width = ((info.xres * 25.4f)/160.0f + 0.5f);

info.height = ((info.yres * 25.4f)/160.0f + 0.5f);

}

float xdpi = (info.xres * 25.4f) / info.width;

float ydpi = (info.yres * 25.4f) / info.height;

float fps = refreshRate / 1000.0f;

LOGI( "using (fd=%d)/n"

"id = %s/n"

"xres = %d px/n"

"yres = %d px/n"

"xres_virtual = %d px/n"

"yres_virtual = %d px/n"

"bpp = %d/n"

"r = %2u:%u/n"

"g = %2u:%u/n"

"b = %2u:%u/n",

fd,

finfo.id,

info.xres,

info.yres,

info.xres_virtual,

info.yres_virtual,

info.bits_per_pixel,

info.red.offset, info.red.length,

info.green.offset, info.green.length,

info.blue.offset, info.blue.length

);

LOGI( "width = %d mm (%f dpi)/n"

"height = %d mm (%f dpi)/n"

"refresh rate = %.2f Hz/n",

info.width, xdpi,

info.height, ydpi,

fps

);

if (ioctl(fd, FBIOGET_FSCREENINFO, &finfo) == -1)

return -errno;

if (finfo.smem_len <= 0)

return -errno;

module->flags = flags;

module->info = info;

module->finfo = finfo;

module->xdpi = xdpi;

module->ydpi = ydpi;

module->fps = fps;

/*

* map the framebuffer

*/

int err;

size_t fbSize = roundUpToPageSize(finfo.line_length * info.yres_virtual);//对齐页

module->framebuffer = new private_handle_t(dup(fd), fbSize, 0);

module->numBuffers = info.yres_virtual / info.yres;

module->bufferMask = 0;

void* vaddr = mmap(0, fbSize, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

if (vaddr == MAP_FAILED) {

LOGE("Error mapping the framebuffer (%s)", strerror(errno));

return -errno;

}

module->framebuffer->base = intptr_t(vaddr);

memset(vaddr, 0, fbSize);

return 0;

}
这个函数就是和驱动相关的调用,其实结合驱动去看代码是很有意思的,把一路都打通了。

该函数首先通过open函数打开设备结点。

"/dev/graphics/fb%u"和"/dev/fb%u",如果前一个顺利打开的话,那么就不打开第二个。我的Log显示打开的是第一个设备结点/dev/graphics/fb%u。

然后通过ioctl读取设备的固定参数(FBIOGET_FSCREENINFO)和可变参数(FBIOGET_VSCREENINFO)。

【kernel部分的代码在drivers/video/fbmem.c中。】

然后对可变参数进行修改,通过ioctl设置(FBIOPUT_VSCREENINFO)显示屏的可变参数。

设置好以后再ioctl-FBIOGET_VSCREENINFO获得可变参数,然后在log上打出显示屏的各个参数设置,也就是我们开机看到的一长串log。

I/gralloc ( 1620): using (fd=8)

I/gralloc ( 1620): id = truly-ILI9327

I/gralloc ( 1620): xres = 240
px

I/gralloc ( 1620): yres = 400
px

I/gralloc ( 1620): xres_virtual = 240
px

I/gralloc ( 1620): yres_virtual = 800
px

I/gralloc ( 1620): bpp = 16

I/gralloc ( 1620): r = 11:5

I/gralloc ( 1620): g = 5:6

I/gralloc ( 1620): b = 0:5

I/gralloc ( 1620): width = 38
mm (160.421051 dpi)

I/gralloc ( 1620): height = 64
mm (158.750000 dpi)

I/gralloc ( 1620): refresh
rate = 60.00 Hz
然后通过mmap完成对显示缓存区的映射。这样mapFrameBufferLocked函数的任务算是完成了。

好了,以上所讲的只是(1)中的第一句话而已

Displayhardware.cpp中的init函数。

mNativeWindow = new FramebufferNativeWindow();


SurfaceFlinger启动过程分析(四)

在加载完framebuffer和gralloc模块之后,我们来看FramebufferNativeWindow构造函数中的代码:

buffers[0] = new NativeBuffer(

fbDev->width, fbDev->height, fbDev->format, GRALLOC_USAGE_HW_FB);

buffers[1] = new NativeBuffer(

fbDev->width, fbDev->height, fbDev->format, GRALLOC_USAGE_HW_FB);

err = grDev->alloc(grDev,

fbDev->width, fbDev->height, fbDev->format,

GRALLOC_USAGE_HW_FB, &buffers[0]->handle, &buffers[0]->stride);

LOGE_IF(err, "fb
buffer 0 allocation failed w=%d, h=%d, err=%s", fbDev->width,fbDev->height, strerror(-err));

err = grDev->alloc(grDev,

fbDev->width, fbDev->height, fbDev->format,

GRALLOC_USAGE_HW_FB, &buffers[1]->handle, &buffers[1]->stride);

LOGE_IF(err, "fb
buffer 1 allocation failed w=%d, h=%d, err=%s",fbDev->width,fbDev->height, strerror(-err));
该构造函数中关键的就剩下这四句高亮代码了,这四句也是framebuffer双缓存机制的关键。
首先新建了两个NativeBuffer,然后通过grDev为它们分配内存空间。这个grDev就是上面gralloc_open的gralloc设备模块。

grDev->alloc这个函数在gralloc_device_open函数里面指定了是gralloc.cpp中的gralloc_alloc函数。

dev->device.alloc = gralloc_alloc;
为两个缓冲区分配完内存之后,FramebufferNativeWindow构造函数的事情就算完了。下面继续看DisplayHardware.cpp中init函数接下去的代码。

DisplayHardware.cpp

if (hw_get_module(OVERLAY_HARDWARE_MODULE_ID, &module) == 0) {

overlay_control_open(module, &mOverlayEngine);

}

// initialize EGL

...
接下去就获得overlay模块,前提是你的设备支持overlay。
然后就初始化EGL。

DisplayHardware.cpp

EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);

eglInitialize(display, NULL, NULL);

eglGetConfigs(display, NULL, 0, &numConfigs);

EGLConfig config;

status_t err = EGLUtils::selectConfigForNativeWindow(

display, attribs, mNativeWindow.get(), &config);
eglGetDisplay是EGL用来获取物理屏幕句柄的函数。返回的是EGLDisplay,代表一个物理显示设备。调用这个函数进入的是egl.cpp[frameworks/base/opengl/libs/egl]

EGLDisplay eglGetDisplay(NativeDisplayType display)

{

uint32_t index = uint32_t(display);

if (index >= NUM_DISPLAYS) {

return setError(EGL_BAD_PARAMETER, EGL_NO_DISPLAY);

}

if (egl_init_drivers() == EGL_FALSE) {

return setError(EGL_BAD_PARAMETER, EGL_NO_DISPLAY);

}

EGLDisplay dpy = EGLDisplay(uintptr_t(display) + 1LU);

return dpy;

}
它会调用egl_init_drivers去初始化设备。

egl_init_drivers->egl_init_drivers_locked
下面简单贴一下egl_init_drivers_locked代码:

EGLBoolean egl_init_drivers_locked()

{

if (sEarlyInitState) {

// initialized by static ctor. should be set here.

return EGL_FALSE;

}

// get our driver loader

Loader& loader(Loader::getInstance());

cnx = &gEGLImpl[IMPL_SOFTWARE];

if (cnx->dso == 0) {

cnx->hooks[GLESv1_INDEX] = &gHooks[GLESv1_INDEX][IMPL_SOFTWARE];

cnx->hooks[GLESv2_INDEX] = &gHooks[GLESv2_INDEX][IMPL_SOFTWARE];

cnx->dso = loader.open(EGL_DEFAULT_DISPLAY, 0, cnx);

if (cnx->dso) {

EGLDisplay dpy = cnx->egl.eglGetDisplay(EGL_DEFAULT_DISPLAY);

LOGE_IF(dpy==EGL_NO_DISPLAY, "No
EGLDisplay for software EGL!");

d->disp[IMPL_SOFTWARE].dpy = dpy;

if (dpy == EGL_NO_DISPLAY) {

loader.close(cnx->dso);

cnx->dso = NULL;

}

}

}

cnx = &gEGLImpl[IMPL_HARDWARE];

if (cnx->dso == 0) {

...

} else {

LOGD("3D hardware acceleration is disabled");

}

}

return EGL_TRUE;

}
egl_init_drivers_locked()函数的作用就是填充gEGLImpl[IMPL_SOFTWARE]和gEGLImpl[IMPL_
HARDWARE]两个数组项。达到通过gEGLImpl[IMPL_SOFTWARE]和gEGLImpl[IMPL_
HARDWARE]两个数组项就可以调用libGLES_android.so库中所有函数的目的。

cnx->hooks[GLESv1_INDEX] = &gHooks[GLESv1_INDEX][IMPL_SOFTWARE];

cnx->hooks[GLESv2_INDEX] = &gHooks[GLESv2_INDEX][IMPL_SOFTWARE];

上面这两句代码的作用是引用赋值,在loader.open完以后,
cnx->hooks[GLESv1_INDEX]会被赋值,而相对应的
gHooks[GLESv1_INDEX][IMPL_SOFTWARE]也会被赋值。

Loader的构造函数先从/system/lib/egl/egl.cfg中读取配置,如果不存在,那就选用默认配置。

Loader::Loader()

{

char line[256];

char tag[256];

FILE* cfg = fopen("/system/lib/egl/egl.cfg", "r");

if (cfg == NULL) {

// default config

LOGD("egl.cfg not found, using default config");

gConfig.add( entry_t(0, 0, "android") );

} else {

while (fgets(line, 256, cfg)) {

int dpy;

int impl;

if (sscanf(line, "%u
%u %s", &dpy, &impl, tag) == 3) {

//LOGD(">>> %u %u %s", dpy, impl, tag);

gConfig.add( entry_t(dpy, impl, tag) );

}

}

fclose(cfg);

}

}
默认的配置为(0, 0, "android")并把它放在gConfig中,以备在调用Loader.open的时候使用。

void* Loader::open(EGLNativeDisplayType
display, int impl, egl_connection_t* cnx)

{

/*

* TODO: if we don't find display/0, then use 0/0

* (0/0 should always work)

*/

void* dso;

char path[PATH_MAX];

int index = int(display);

driver_t* hnd = 0;

const char* const format = "/system/lib/egl/lib%s_%s.so";

char const* tag = getTag(index,
impl);

if (tag) {

snprintf(path, PATH_MAX, format, "GLES", tag);

dso = load_driver(path, cnx, EGL | GLESv1_CM | GLESv2);

if (dso) {

hnd = new driver_t(dso);

} else {

// Always load EGL first

snprintf(path, PATH_MAX, format, "EGL", tag);

dso = load_driver(path, cnx, EGL);

if (dso) {

hnd = new driver_t(dso);

// TODO: make this more automated

snprintf(path, PATH_MAX, format, "GLESv1_CM", tag);

hnd->set( load_driver(path, cnx, GLESv1_CM), GLESv1_CM );

snprintf(path, PATH_MAX, format, "GLESv2", tag);

hnd->set( load_driver(path, cnx, GLESv2), GLESv2 );

}

}

}

LOG_FATAL_IF(!index && !impl && !hnd,

"couldn't find the default OpenGL ES implementation "

"for default display");

return (void*)hnd;

}
Loader::open这个函数首先去加载/system/lib/egl/libGLES_android.so,如果加载成功,那么对EGL
| GLESv1_CM | GLESv2三个函数库,进行初始化。如果加载不成功,那么就加载libEGL_android.so,libGLESv1_CM_android.so,libGLESv2_android.so这三个库,事实上我们的/system/lib/egl目录下面只有libGLES_android.so这一个库,所以加载libGLES_android.so库。

Ps:libEGL.so ,libGLESv1_CM.so, libGLESv2.so三个库在/system/lib目录下面。

下面简单地分析下EGL的配置。首先在Loader的构造函数中获取了EGL的配置信息0,
0, "android",然后把它放在一个结构体中,这个结构体名为entry_t,定义如下

struct entry_t {

entry_t() { }

entry_t(int dpy, int impl, const char* tag);

int dpy;

int impl;

String8 tag;

};

随后在Loader::open中调用getTag(index,
impl),其实为getTag(0, 0)。所以getTag返回的是字符串android。

const char* Loader::getTag(int dpy, int impl)

{

const Vector<entry_t>& cfgs(gConfig);

const size_t c = cfgs.size();

for (size_t i=0 ; i<c ; i++) {

if (dpy == cfgs[i].dpy)

if (impl == cfgs[i].impl)

return cfgs[i].tag.string();

}

return 0;

}

现在有了库的路径path = /system/lib/egl/libGLES_android.so,通过load_driver函数来加载函数库。

Loader::load_driver

void *Loader::load_driver(const char* driver_absolute_path,

egl_connection_t* cnx, uint32_t mask)

{

if (access(driver_absolute_path, R_OK)) {

// this happens often, we don't want to log an error

return 0;

}//加载libGLES_android.so

void* dso = dlopen(driver_absolute_path, RTLD_NOW | RTLD_LOCAL);

if (dso == 0) {

const char* err = dlerror();

LOGE("load_driver(%s): %s", driver_absolute_path, err?err:"unknown");

return 0;

}

LOGD("loaded %s", driver_absolute_path);

if (mask & EGL) {//加载EGL函数库

getProcAddress = (getProcAddressType)dlsym(dso, "eglGetProcAddress");

LOGE_IF(!getProcAddress,

"can't find eglGetProcAddress() in %s", driver_absolute_path);

egl_t* egl = &cnx->egl;//把函数赋值到cnx->egl中

__eglMustCastToProperFunctionPointerType* curr =

(__eglMustCastToProperFunctionPointerType*)egl;

char const * const * api = egl_names;

while (*api) {

char const * name = *api;

__eglMustCastToProperFunctionPointerType f =

(__eglMustCastToProperFunctionPointerType)dlsym(dso, name);

if (f == NULL) {

// couldn't find the entry-point, use eglGetProcAddress()

f = getProcAddress(name);

if (f == NULL) {

f = (__eglMustCastToProperFunctionPointerType)0;

}

}

*curr++ = f;

api++;

}

}

if (mask & GLESv1_CM) {//加载GLESv1_CM函数库

init_api(dso, gl_names,

(__eglMustCastToProperFunctionPointerType*)

&cnx->hooks[GLESv1_INDEX]->gl,

getProcAddress);

}

if (mask & GLESv2) {//加载GLESv2函数库

init_api(dso, gl_names,

(__eglMustCastToProperFunctionPointerType*)

&cnx->hooks[GLESv2_INDEX]->gl,

getProcAddress);

}

return dso;

}

通过系统调用dlopen打开一个动态链接库。以下是百度百科对dlopen的解释:

dlopen()

  功能:打开一个动态链接库

  包含头文件:

  #include <dlfcn.h>

  函数定义:

  void * dlopen( const char * pathname, int mode );

  函数描述:

  在dlopen的()函数以指定模式打开指定的动态连接库文件,并返回一个句柄给调用进程。使用dlclose()来卸载打开的库。

然后通过dlsym函数获得指向函数地址指针。以下是百度百科对dlsym的解释:

dlsym()的函数原型是

  void* dlsym(void* handle,const
char* symbol)

  该函数在<dlfcn.h>文件中。

  handle是由dlopen打开动态链接库后返回的指针,symbol就是要求获取的函数的名称,函数返回值是void*,指向函数的地址,供调用使用。
dlsym首先去得到eglGetProcAddress的函数指针,这个函数的原型:void
(*eglGetProcAddress(const char *procname)) ();

该函数的作用是返回由procname指定的扩展函数地址。

下面综述一下load_driver函数所做的工作:首先通过dlopen加载libGLES_android.so库,库所在路径为/system/lib/egl/libGLES_android.so,然后从libGLES_android.so库中提取EGL的各个API函数的地址放到cnx->egl中,从libGLES_android.so获取GLESv1_CM的API保存到cnx->hooks[GLESv1_INDEX]->gl中,从libGLES_android.so获取GLESv1_CM的API保存到cnx->hooks[GLESv2_INDEX]->gl。

提取EGLAPI地址的方法是首先通过dlsym函数获得一个获取函数地址的函数eglGetProcAddress的地址,然后遍历EGL的API所在文件frameworks/base/opengl/libs/EGL/egl_entries.in。先通过dlsym获取各个API地址,如果返回NULL再利用eglGetProcAddress去获得,如果依旧为空就把函数地址赋值为0;提取GLESv1_CM和GLESv1_CM库中函数地址方法和提取EGL差不多,只是他们的函数文件保存在frameworks/base/opengl/libs/entries.in中。还有它们把函数地址复制给了cnx->hooks[GLESv1_INDEX]->gl和cnx->hooks[GLESv2_INDEX]->gl。

等加载完库以后在libs/egl/egl.cpp里面的egl_init_drivers_locked就通过cnx->egl.eglGetDisplay(EGL_DEFAULT_DISPLAY);调用eglGetDisplay函数,其实就是调用libGLES_android.so里面的eglGetDisplay函数,libGLES_android.so库是由目录frameworks/base/opengl/libagl生成的,所以libGLES_android.so里面的eglGetDisplay函数是文件libagl/egl.cpp里面的。

其实libs/egl/egl.cpp中的函数,大多是调用libGLES_android.so库里面的,是对其的一种封装,也就是说调用libagl/egl.cpp文件里面的同名函数,如eglGetDisplay,eglCreateWindowSurface,eglCreateContext等。因为libGLES_android.so库是由rameworks/base/opengl/libagl目录生成。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: