您的位置:首页 > 运维架构 > Linux

Linux驱动之等待队列和poll使用

2015-02-06 15:17 337 查看
参考:http://blog.csdn.net/luoqindong/article/details/17840095

等待队列一般用于数据的同步,以及异步事件通知等。在中断处理,定时器,进程同步的场合用于处理阻塞进程的唤醒。

在wait.c中可以看到wait_queue_t和wait_queue_head_t这两个数据结构:

struct __wait_queue_head {
spinlock_t lock;
struct list_head task_list;
};
typedef struct __wait_queue_head wait_queue_head_t;


struct __wait_queue {
unsigned int flags;
#define WQ_FLAG_EXCLUSIVE	0x01
void *private;
wait_queue_func_t func;
struct list_head task_list;
};

wait_queue_t和wait_queue_head_t之间的关系:wait_queue_t是wait_queue_head_t所代表队列中的一个元素。



一般来说使用wait_queue_head即可,不过在有些场合需要使用wait_queue。

等待队列使用:

声明:

DECLARE_WAIT_QUEUE_HEAD(name);

wait_queue_head_t my_queue;
init_waitqueue_head(&my_queue);


睡眠操作:

/**
* wait_event - sleep until a condition gets true
* @wq: the waitqueue to wait on
* @condition: a C expression for the event to wait for
*
* The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
* @condition evaluates to true. The @condition is checked each time
* the waitqueue @wq is woken up.
*
* wake_up() has to be called after changing any variable that could
* change the result of the wait condition.
*/
#define wait_event(wq, condition) 					\
do {									\
if (condition)	 						\
break;							\
__wait_event(wq, condition);					\
} while (0)

其他如wait_event_timeout,wait_event_interruptible,wait_event_interruptible_timeout,wait_event_killable

一般来说,与其使用wait_event,不如使用wait_event_interruptible。不过当信号中断时,需要返回-ERESTARTSYS。

相对睡眠,另外一半就是唤醒操作,唤醒操作需要其他执行线程(可能是另外一个进程或者中断服务函数)。

#define wake_up(x)			__wake_up(x, TASK_NORMAL, 1, NULL)


/**
* __wake_up - wake up threads blocked on a waitqueue.
* @q: the waitqueue
* @mode: which threads
* @nr_exclusive: how many wake-one or wake-many threads to wake up
* @key: is directly passed to the wakeup function
*
* It may be assumed that this function implies a write memory barrier before
* changing the task state if and only if any tasks are woken up.
*/
void __wake_up(wait_queue_head_t *q, unsigned int mode,
int nr_exclusive, void *key)
{
unsigned long flags;

spin_lock_irqsave(&q->lock, flags);
__wake_up_common(q, mode, nr_exclusive, 0, key);
spin_unlock_irqrestore(&q->lock, flags);
}

其他如: wake_up_interruptible则只唤醒等待队列上所有可中断的休眠的进程。

整个流程可以简单地总结为:

休眠:
wait_event(queue,condition==1);
condition=0;
唤醒:
condition=1;
wake_up(queue);

若是线程A、B同时休眠等待condition。线程C唤醒线程A、B。在condition=0之前的这个节点,线程A和线程B都有可能看到condition=1的条件满足。

另外还有wait_queue_t,若需要使用wait_queue_t,一般的使用过程:

1、声明wait_queue_t和wait_queue_head_t,其中wait_queue_t的声明:

#define DECLARE_WAITQUEUE(name, tsk)					\
wait_queue_t name = __WAITQUEUE_INITIALIZER(name, tsk)

#define __WAITQUEUE_INITIALIZER(name, tsk) {				\
.private	= tsk,						\
.func		= default_wake_function,			\
.task_list	= { NULL, NULL } }


2、调用add_wait_queue

void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;

wait->flags &= ~WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
__add_wait_queue(q, wait);
spin_unlock_irqrestore(&q->lock, flags);
}


static inline void __add_wait_queue(wait_queue_head_t *head, wait_queue_t *new)
{
list_add(&new->task_list, &head->task_list);
}
3、将当前的进程设置为TASK_INTERRUPTIBLE或者TASK_UNINTERRUPTIBLE

set_current_state(TASK_INTERRUPTIBLE);

4、调用schedule()

当等待的条件满足时:

1、设置当前进程状态为RUNNING

__set_current_state(TASK_RUNNING);

2、remove_wait_queue

void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;

spin_lock_irqsave(&q->lock, flags);
__remove_wait_queue(q, wait);
spin_unlock_irqrestore(&q->lock, flags);
}
static inline void __remove_wait_queue(wait_queue_head_t *head,
wait_queue_t *old)
{
list_del(&old->task_list);
}

上述技术在设备的阻塞和非阻塞操作中十分常见,对于应用层来说,open时默认使用阻塞方式打开,O_NONBLOCK或者O_NDELAY(system V)可以改变为非阻塞方式。

对于像FIFO或者被锁住的磁盘文件,打开它可能需要很长的时间进行初始化,非阻塞方式可以直接返回-EAGAIN。

对于读写操作,阻塞操作的流程比较常见,我们需要注意非阻塞操作的流程。非阻塞读写需要支持select和poll这两个系统调用,这两个系统调用最终会调用到内核的poll。因此,要实现设备的非阻塞操作,就必须实现内核的poll函数。

典型的poll函数的实现如下:

static unsigned int ic_id_poll(struct file *filep, struct poll_table_struct *wait)
{
unsigned int mask = 0;
//add poll_wait to info application to poll again if wait_queue_head status has any change.
poll_wait(filp, &devp->wait_r, wait);
poll_wait(filp, &devp->wait_w, wait);

if(devp->bufferlen != 0)
{
mask |= POLLIN | POLLRDNORM;//readable
}

if(devp->bufferlen != BUFFSIZE)
{
mask |= POLLOUT | POLLWRNORM; //writeable
}

return mask;
}
poll函数需要实现两个过程:

1、将等待队列加入到poll_table中,这样一旦,等待队列状态发生变换,上层能够知道,从而能够马上重新再次调用poll函数

2、返回设备状态标志。

对于poll_wait,定义如下:

static inline void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p)
{
if (p && wait_address)
p->qproc(filp, wait_address, p);
}
最终p->qproc的调用

/* Add a new entry */
static void __pollwait(struct file *filp, wait_queue_head_t *wait_address,
poll_table *p)
{
struct poll_wqueues *pwq = container_of(p, struct poll_wqueues, pt);
struct poll_table_entry *entry = poll_get_entry(pwq);
if (!entry)
return;
get_file(filp);
entry->filp = filp;
entry->wait_address = wait_address;
entry->key = p->key;
init_waitqueue_func_entry(&entry->wait, pollwake);
entry->wait.private = pwq;
add_wait_queue(wait_address, &entry->wait);
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: