您的位置:首页 > 运维架构 > Linux

Linux驱动修炼之道-SPI驱动框架源码分析(中)

2015-01-21 11:32 288 查看
来自:http://blog.csdn.net/woshixingaaa/article/details/6574220

这篇来分析spi子系统的建立过程。

嵌入式微处理器访问SPI设备有两种方式:使用GPIO模拟SPI接口的工作时序或者使用SPI控制器。使用GPIO模拟SPI接口的工作时序是非常容易实现的,但是会导致大量的时间耗费在模拟SPI接口的时序上,访问效率比较低,容易成为系统瓶颈。这里主要分析使用SPI控制器的情况。



这个是由sys文件系统导出的spi子系统在内核中的视图了。

首先了解一下Linux内核中的几个文件:spi.c也就是spi子系统的核心了,spi_s3c24xx.c是s3c24xx系列芯片的SPI controller驱动,它向更上层的SPI核心层(spi.c)提供接口用来控制芯片的SPI controller,是一个被其他驱动使用的驱动。而spidev.c是在核心层基础之上将SPI controller模拟成一个字符型的驱动,向文件系统提供标准的文件系统接口,用来操作对应的SPI
controller。

下面我们来看看spi子系统是怎么注册进内核的:

view
plain

static int __init spi_init(void)

{

int status;

buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);

if (!buf) {

status = -ENOMEM;

goto err0;

}

status = bus_register(&spi_bus_type);

if (status < 0)

goto err1;

status = class_register(&spi_master_class);

if (status < 0)

goto err2;

return 0;

err2:

bus_unregister(&spi_bus_type);

err1:

kfree(buf);

buf = NULL;

err0:

return status;

}

postcore_initcall(spi_init);

这里注册了一个spi_bus_type,也就是一个spi总线,和一个spi_master的class。分别对应上图中sys/bus/下的spi目录和sys/class/下的spi_master目录。

下面来分析SPI controller驱动的注册与初始化过程,首先执行的是s3c24xx_spi_init。

view
plain

static int __init s3c24xx_spi_init(void)

{

return platform_driver_probe(&s3c24xx_spi_driver, s3c24xx_spi_probe);

}

platform_driver_probe中完成了s3c24xx_spi_driver这个平台驱动的注册,相应的平台设备在devs.c中定义,在smdk2440_devices中添加&s3c_device_spi0,&s3c_device_spi1,这就生成了图中所示的s3c24xx-spi.0与s3c24xx-spi.1,当然了这图是在网上找的,不是我画的,所以是6410的。这里s3c24xx-spi.0表示s3c2440的spi controller的0号接口,s3c24xx-spi.1表示s3c2440的spi
controller的1号接口。注册了s3c24xx_spi_driver后,赋值了平台驱动的probe函数为s3c24xx_spi_probe。所以当match成功后,调用s3c24xx_spi_probe,这里看其实现:

view
plain

<span style="font-size:18px;">static int __init s3c24xx_spi_probe(struct platform_device *pdev)

{

struct s3c2410_spi_info *pdata;

struct s3c24xx_spi *hw;

struct spi_master *master;

struct resource *res;

int err = 0;

/*分配struct spi_master+struct s3c24xx_spi大小的数据,把s3c24xx_spi设为spi_master的私有数据*/

master = spi_alloc_master(&pdev->dev, sizeof(struct s3c24xx_spi));

if (master == NULL) {

dev_err(&pdev->dev, "No memory for spi_master\n");

err = -ENOMEM;

goto err_nomem;

}

/*从master中获得s3c24xx_spi*/

hw = spi_master_get_devdata(master);

memset(hw, 0, sizeof(struct s3c24xx_spi));

hw->master = spi_master_get(master);

/*驱动移植的时候需要实现的重要结构,初始化为&s3c2410_spi0_platdata*/

hw->pdata = pdata = pdev->dev.platform_data;

hw->dev = &pdev->dev;

if (pdata == NULL) {

dev_err(&pdev->dev, "No platform data supplied\n");

err = -ENOENT;

goto err_no_pdata;

}

/*设置平台的私有数据为s3c24xx_spi*/

platform_set_drvdata(pdev, hw);

init_completion(&hw->done);

/* setup the master state. */

/*该总线上的设备数*/

master->num_chipselect = hw->pdata->num_cs;

/*总线号*/

master->bus_num = pdata->bus_num;

/* setup the state for the bitbang driver */

/*spi_bitbang专门负责数据的传输*/

hw->bitbang.master = hw->master;

hw->bitbang.setup_transfer = s3c24xx_spi_setupxfer;

hw->bitbang.chipselect = s3c24xx_spi_chipsel;

hw->bitbang.txrx_bufs = s3c24xx_spi_txrx;

hw->bitbang.master->setup = s3c24xx_spi_setup;

dev_dbg(hw->dev, "bitbang at %p\n", &hw->bitbang);

。。。。。。。。。。。。。。。。。。。。。。。。

/*初始化设置寄存器,包括对SPIMOSI,SPIMISO,SPICLK引脚的设置*/

s3c24xx_spi_initialsetup(hw);

/* register our spi controller */

err = spi_bitbang_start(&hw->bitbang);

。。。。。。。。。。。。。。。。。。。。。

}

spi controller的register在spi_bitbang_start函数中实现:

int spi_bitbang_start(struct spi_bitbang *bitbang)

{

int status;

if (!bitbang->master || !bitbang->chipselect)

return -EINVAL;

/*动态创建一个work_struct结构,它的处理函数是bitbang_work*/

INIT_WORK(&bitbang->work, bitbang_work);

spin_lock_init(&bitbang->lock);

INIT_LIST_HEAD(&bitbang->queue);

/*spi的数据传输就是用这个方法*/

if (!bitbang->master->transfer)

bitbang->master->transfer = spi_bitbang_transfer;

if (!bitbang->txrx_bufs) {

bitbang->use_dma = 0;

/*spi_s3c24xx.c中有spi_bitbang_bufs方法,在bitbang_work中被调用*/

bitbang->txrx_bufs = spi_bitbang_bufs;

if (!bitbang->master->setup) {

if (!bitbang->setup_transfer)

bitbang->setup_transfer =

spi_bitbang_setup_transfer;

/*在spi_s3c24xx.c中有setup的处理方法,在spi_new_device中被调用*/

bitbang->master->setup = spi_bitbang_setup;

bitbang->master->cleanup = spi_bitbang_cleanup;

}

} else if (!bitbang->master->setup)

return -EINVAL;

/* this task is the only thing to touch the SPI bits */

bitbang->busy = 0;

/调用create_singlethread_workqueue创建单个工作线程/

bitbang->workqueue = create_singlethread_workqueue(

dev_name(bitbang->master->dev.parent));

if (bitbang->workqueue == NULL) {

status = -EBUSY;

goto err1;

}

status = spi_register_master(bitbang->master);

if (status < 0)

goto err2;

return status;

err2:

destroy_workqueue(bitbang->workqueue);

err1:

return status;

}</span>

然后看这里是怎样注册spi主机控制器驱动的:

view
plain

int spi_register_master(struct spi_master *master)

{

。。。。。。。。。。。。。。。。

/*将spi添加到内核,这也是sys/class/Spi_master下产生Spi0,Spi1的原因*/

dev_set_name(&master->dev, "spi%u", master->bus_num);

status = device_add(&master->dev);

scan_boardinfo(master);

}

这里跟踪scan_boardinfo函数:

view
plain

static void scan_boardinfo(struct spi_master *master)

{

struct boardinfo *bi;

mutex_lock(&board_lock);

/*遍历所有挂在board_list上的struct boardinfo*/

list_for_each_entry(bi, &board_list, list) {

struct spi_board_info *chip = bi->board_info;

unsigned n;

/*遍历每个boardinfo管理的spi_board_info,如果设备的总线号与控制器的总线好相等,则创建新设备*/

for (n = bi->n_board_info; n > 0; n--, chip++) {

if (chip->bus_num != master->bus_num)

continue;

(void) spi_new_device(master, chip);

}

}

mutex_unlock(&board_lock);

}

在移植的时候我们会在mach-smdk2440.c中的smdk2440_machine_init中添加spi_register_board_info

这个函数完成了将spi_board_info交由boardinfo管理,并把boardinfo挂载到board_list链表上。也就是说在系统初始化的时候将spi_device交由到挂在board_list上的boardinfo管理,在spi controller的driver注册的时候不但注册这个主机控制器的驱动,还要遍历这个主机控制器的总线上的spi_device,将总线上的spi_device全部注册进内核。当注册进内核并且spi_driver已经注册的时候,如果总线match成功,则会调用spi_driver的probe函数,这个将在后边进行分析。

view
plain

<span style="font-size:18px;">int __init

spi_register_board_info(struct spi_board_info const *info, unsigned n)

{

struct boardinfo *bi;

bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);

if (!bi)

return -ENOMEM;

bi->n_board_info = n;

memcpy(bi->board_info, info, n * sizeof *info);

mutex_lock(&board_lock);

list_add_tail(&bi->list, &board_list);

mutex_unlock(&board_lock);

return 0;

}</span>

看一下创建新设备的函数:

view
plain

<span style="font-size:18px;">struct spi_device *spi_new_device(struct spi_master *master,

struct spi_board_info *chip)

{

struct spi_device *proxy;

int status;

proxy = spi_alloc_device(master);

if (!proxy)

return NULL;

WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

/*初始化spi_device的各个字段*/

proxy->chip_select = chip->chip_select;

proxy->max_speed_hz = chip->max_speed_hz;

proxy->mode = chip->mode;

proxy->irq = chip->irq;

/*这里获得了spi_device的名字,这个modalias也是在我们移植时在mach-smdk2440.c中的s3c2410_spi0_board中设定的*/

strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));

proxy->dev.platform_data = (void *) chip->platform_data;

proxy->controller_data = chip->controller_data;

proxy->controller_state = NULL;

/*主要完成将spi_device添加到内核*/

status = spi_add_device(proxy);

if (status < 0) {

spi_dev_put(proxy);

return NULL;

}

return proxy;

}</span>

下面来看分配spi_alloc_device的函数,主要完成了分配spi_device,并初始化spi->dev的一些字段。

view
plain

struct spi_device *spi_alloc_device(struct spi_master *master)

{

struct spi_device *spi;

struct device *dev = master->dev.parent;

if (!spi_master_get(master))

return NULL;

spi = kzalloc(sizeof *spi, GFP_KERNEL);

if (!spi) {

dev_err(dev, "cannot alloc spi_device\n");

spi_master_put(master);

return NULL;

}

spi->master = master;

spi->dev.parent = dev;

/*设置总线是spi_bus_type,下面会讲到spi_device与spi_driver是怎样match上的*/

spi->dev.bus = &spi_bus_type;

spi->dev.release = spidev_release;

device_initialize(&spi->dev);

return spi;

}

下面来看分配的这个spi_device是怎样注册进内核的:

view
plain

int spi_add_device(struct spi_device *spi)

{

static DEFINE_MUTEX(spi_add_lock);

struct device *dev = spi->master->dev.parent;

int status;

/*spi_device的片选号不能大于spi控制器的片选数*/

if (spi->chip_select >= spi->master->num_chipselect) {

dev_err(dev, "cs%d >= max %d\n",

spi->chip_select,

spi->master->num_chipselect);

return -EINVAL;

}

/*这里设置是spi_device在Linux设备驱动模型中的name,也就是图中的spi0.0,而在/dev/下设备节点的名字是proxy->modalias中的名字*/

dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),

spi->chip_select);

mutex_lock(&spi_add_lock);

/*如果总线上挂的设备已经有这个名字,则设置状态忙碌,并退出*/

if (bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev))

!= NULL) {

dev_err(dev, "chipselect %d already in use\n",

spi->chip_select);

status = -EBUSY;

goto done;

}

/对spi_device的时钟等进行设置/

status = spi->master->setup(spi);

if (status < 0) {

dev_err(dev, "can't %s %s, status %d\n",

"setup", dev_name(&spi->dev), status);

goto done;

}

/*添加到内核*/

status = device_add(&spi->dev);

if (status < 0)

dev_err(dev, "can't %s %s, status %d\n",

"add", dev_name(&spi->dev), status);

else

dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));

done:

mutex_unlock(&spi_add_lock);

return status;

}

static int s3c24xx_spi_setup(struct spi_device *spi)

{

。。。。。。。。。。。。。。

ret = s3c24xx_spi_setupxfer(spi, NULL);

。。。。。。。。。。。。。。

}

static int s3c24xx_spi_setupxfer(struct spi_device *spi,

struct spi_transfer *t)

{

struct s3c24xx_spi *hw = to_hw(spi);

unsigned int bpw;

unsigned int hz;

unsigned int div;

/*设置了每字长的位数,发送速度*/

bpw = t ? t->bits_per_word : spi->bits_per_word;

hz = t ? t->speed_hz : spi->max_speed_hz;

if (bpw != 8) {

dev_err(&spi->dev, "invalid bits-per-word (%d)\n", bpw);

return -EINVAL;

}

/*色黄志分频值*/

div = clk_get_rate(hw->clk) / hz;

/* is clk = pclk / (2 * (pre+1)), or is it

* clk = (pclk * 2) / ( pre + 1) */

div /= 2;

if (div > 0)

div -= 1;

if (div > 255)

div = 255;

dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", div, hz);

writeb(div, hw->regs + S3C2410_SPPRE);

spin_lock(&hw->bitbang.lock);

if (!hw->bitbang.busy) {

hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);

/* need to ndelay for 0.5 clocktick ? */

}

spin_unlock(&hw->bitbang.lock);

return 0;

}

下面来看这个spi_driver是怎样注册的,又是与spi_device怎样match上的。

在spidev.c中:

view
plain

static int __init spidev_init(void)

{

int status;

BUILD_BUG_ON(N_SPI_MINORS > 256);

status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);

if (status < 0)

return status;

spidev_class = class_create(THIS_MODULE, "spidev");

if (IS_ERR(spidev_class)) {

unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);

return PTR_ERR(spidev_class);

}

status = spi_register_driver(&spidev_spi);

if (status < 0) {

class_destroy(spidev_class);

unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);

}

return status;

}

注册了名为”spi”的字符驱动,然后注册了spidev_spi驱动,这个就是图中sys/Bus/Spi/Drivers/下的spidev。

view
plain

static struct spi_driver spidev_spi = {

.driver = {

.name = "spidev",

.owner = THIS_MODULE,

},

.probe = spidev_probe,

.remove = __devexit_p(spidev_remove),

};

view
plain

static struct spi_driver spidev_spi = {

.driver = {

.name = "spidev",

.owner = THIS_MODULE,

},

.probe = spidev_probe,

.remove = __devexit_p(spidev_remove),

};

这里来看__driver_attach这个函数,其中分别调用了driver_match_device,driver_probe_device函数。如果匹配成果调用probe函数,否则返回。

view
plain

static int __driver_attach(struct device *dev, void *data)

{

struct device_driver *drv = data;

if (!driver_match_device(drv, dev))

return 0;

if (dev->parent) /* Needed for USB */

down(&dev->parent->sem);

down(&dev->sem);

if (!dev->driver)

driver_probe_device(drv, dev);

up(&dev->sem);

if (dev->parent)

up(&dev->parent->sem);

return 0;

}

匹配的时候调用的bus的match函数。

view
plain

struct bus_type spi_bus_type = {

.name = "spi",

.dev_attrs = spi_dev_attrs,

.match = spi_match_device,

.uevent = spi_uevent,

.suspend = spi_suspend,

.resume = spi_resume,

};

static int spi_match_device(struct device *dev, struct device_driver *drv)

{

const struct spi_device *spi = to_spi_device(dev);

return strcmp(spi->modalias, drv->name) == 0;

}

可以看到这里根据驱动和设备的名字进行匹配,匹配成功后调用驱动的probe函数。

view
plain

static int spi_drv_probe(struct device *dev)

{

const struct spi_driver *sdrv = to_spi_driver(dev->driver);

return sdrv->probe(to_spi_device(dev));

}

可以看大调用了具体的probe函数,这里实现了把spidev添加到device_list,这样这个虚拟的字符驱动就注册并初始化完毕。

view
plain

static int spidev_remove(struct spi_device *spi)

{

struct spidev_data *spidev = spi_get_drvdata(spi);

/* make sure ops on existing fds can abort cleanly */

spin_lock_irq(&spidev->spi_lock);

spidev->spi = NULL;

spi_set_drvdata(spi, NULL);

spin_unlock_irq(&spidev->spi_lock);

/* prevent new opens */

mutex_lock(&device_list_lock);

list_del(&spidev->device_entry);

device_destroy(spidev_class, spidev->devt);

clear_bit(MINOR(spidev->devt), minors);

if (spidev->users == 0)

kfree(spidev);

mutex_unlock(&device_list_lock);

return 0;

}

在spidev的注册函数中注册了文件操作集合file_operations,为用户空间提供了操作SPI controller的接口。

view
plain

static struct file_operations spidev_fops = {

.owner = THIS_MODULE,

/* REVISIT switch to aio primitives, so that userspace

* gets more complete API coverage. It'll simplify things

* too, except for the locking.

*/

.write = spidev_write,

.read = spidev_read,

.unlocked_ioctl = spidev_ioctl,

.open = spidev_open,

.release = spidev_release,

};

到此为止spi子系统与spi_master,spi_device,spi_driver这个Linux设备驱动模型已经建立完了。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: