您的位置:首页 > 其它

二层交换机,三层交换机,路由器的区别

2014-11-24 14:49 218 查看
zz:http://blog.csdn.net/herostarone/article/details/8256235

二层交换机:

二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。

具体如下:

(1)当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上;

(2)再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;

(3)如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上。

三层交换机: 三层交换技术就是将路由技术与交换技术合二为一的技术。在对第一个数据流进行路由后,它将会产生一个MAC地址与IP地址的映射表,当同样的数据流再次通过时,将根据此表直接从二层通过而不是再次路由,从而消除了路由器进行路由选择而造成网络的延迟,提高了数据包转发的效率。

路由器:传统地,路由器工作于OSI七层协议中的第三层,其主要任务是接收来自一个网络接口的数据包,根据其中所含的目的地址,决定转发到下一个目的地址。因此,路由器首先得在转发路由表中查找它的目的地址,若找到了目的地址,就在数据包的帧格前添加下一个MAC地址,同时IP数据包头的TTL(Time
To Live)域也开始减数,并重新计算校验和。当数据包被送到输出端口时,它需要按顺序等待,以便被传送到输出链路上。

路由器在工作时能够按照某种路由通信协议查找设备中的路由表。如果到某一特定节点有一条以上的路径,则基本预先确定的路由准则是选择最优(或最经济)的传输路径。由于各种网络段和其相互连接情况可能会因环境变化而变化,因此路由情况的信息一般也按所使用的路由信息协议的规定而定时更新。

主要区别:二层交换机工作在数据链路层,三层交换机工作在网络层,路由器工作在网络层。

具体区别如下:

二层交换机和三层交换机的区别:

三层交换机使用了三层交换技术

简单地说,三层交换技术就是:二层交换技术+三层转发技术。它解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。

什么是三层交换

三层交换(也称多层交换技术,或IP交换技术)是相对于传统交换概念而提出的。众所周知,传统的交换技术是在OSI网络标准模型中的第二层——数据链路层进行*作的,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发。简单地说,三层交换技术就是:二层交换技术+三层转发技术。

三层交换技术的出现,解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。

其原理是:假设两个使用IP协议的站点A、B通过第三层交换机进行通信,发送站点A在开始发送时,把自己的IP地址与B站的IP地址比较,判断B站是否与自己在同一子网内。若目的站B与发送站A在同一子网内,则进行二层的转发。若两个站点不在同一子网内,如发送站A要与目的站B通信,发送站A要向“缺省网关”发出ARP(地址解析)封包,而“缺省网关”的IP地址其实是三层交换机的三层交换模块。当发送站A对“缺省网关”的IP地址广播出一个ARP请求时,如果三层交换模块在以前的通信过程中已经知道B站的MAC地址,则向发送站A回复B的MAC地址。否则三层交换模块根据路由信息向B站广播一个ARP请求,B站得到此ARP请求后向三层交换模块回复其MAC地址,三层交换模块保存此地址并回复给发送站A,同时将B站的MAC地址发送到二层交换引擎的MAC地址表中。从这以后,当A向B发送的数据包便全部交给二层交换处理,信息得以高速交换。由于仅仅在路由过程中才需要三层处理,绝大部分数据都通过二层交换转发,因此三层交换机的速度很快,接近二层交换机的速度,同时比相同路由器的价格低很多。

第二层交换机和路由器的区别:

传统交换机从网桥发展而来,属于OSI第二层即数据链路层设备。它根据MAC地址寻址,通过站表选择路由,站表的建立和维护由交换机自动进行。路由器属于OSI第三层即网络层设备,它根据IP地址进行寻址,通过路由表路由协议产生。交换机最大的好处是快速,由于交换机只须识别帧中MAC地址,直接根据MAC地址产生选择转发端口算法简单,便于ASIC实现,因此转发速度极高。但交换机的工作机制也带来一些问题。

1.回路:根据交换机地址学习和站表建立算法,交换机之间不允许存在回路。一旦存在回路,必须启动生成树算法,阻塞掉产生回路的端口。而路由器的路由协议没有这个问题,路由器之间可以有多条通路来平衡负载,提高可靠性。

2.负载集中:交换机之间只能有一条通路,使得信息集中在一条通信链路上,不能进行动态分配,以平衡负载。而路由器的路由协议算法可以避免这一点,OSPF路由协议算法不但能产生多条路由,而且能为不同的网络应用选择各自不同的最佳路由。

3.广播控制:交换机只能缩小冲突域,而不能缩小广播域。整个交换式网络就是一个大的广播域,广播报文散到整个交换式网络。而路由器可以隔离广播域,广播报文不能通过路由器继续进行广播。

4.子网划分:交换机只能识别MAC地址。MAC地址是物理地址,而且采用平坦的地址结构,因此不能根据MAC地址来划分子网。而路由器识别IP地址,IP地址由网络管理员分配,是逻辑地址且IP地址具有层次结构,被划分成网络号和主机号,可以非常方便地用于划分子网,路由器的主要功能就是用于连接不同的网络。

5.保密问题:虽说交换机也可以根据帧的源MAC地址、目的MAC地址和其他帧中内容对帧实施过滤,但路由器根据报文的源IP地址、目的IP地址、TCP端口地址等内容对报文实施过滤,更加直观方便。

6.介质相关:交换机作为桥接设备也能完成不同链路层和物理层之间的转换,但这种转换过程比较复杂,不适合ASIC实现,势必降低交换机的转发速度。因此目前交换机主要完成相同或相似物理介质和链路协议的网络互连,而不会用来在物理介质和链路层协议相差甚元的网络之间进行互连。而路由器则不同,它主要用于不同网络之间互连,因此能连接不同物理介质、链路层协议和网络层协议的网络。路由器在功能上虽然占据了优势,但价格昂贵,报文转发速度低。近几年,交换机为提高性能做了许多改进,其中最突出的改进是虚拟网络和三层交换。

划分子网可以缩小广播域,减少广播风暴对网络的影响。路由器每一接口连接一个子网,广播报文不能经过路由器广播出去,连接在路由器不同接口的子网属于不同子网,子网范围由路由器物理划分。对交换机而言,每一个端口对应一个网段,由于子网由若干网段构成,通过对交换机端口的组合,可以逻辑划分子网。广播报文只能在子网内广播,不能扩散到别的子网内,通过合理划分逻辑子网,达到控制广播的目的。由于逻辑子网由交换机端口任意组合,没有物理上的相关性,因此称为虚拟子网,或叫虚拟网。虚拟网技术不用路由器就解决了广播报文的隔离问题,且虚拟网内网段与其物理位置无关,即相邻网段可以属于不同虚拟网,而相隔甚远的两个网段可能属于不同虚拟网,而相隔甚远的两个网段可能属于同一个虚拟网。不同虚拟网内的终端之间不能相互通信,增强了对网络内数据的访问控制。

第三层交换机和路由器的区别:

在第三层交换技术出现之前,几乎没有必要将路由功能器件和路由器区别开来,他们完全是相同的:提供路由功能正在路由器的工作,然而,现在第三层交换机完全能够执行传统路由器的大多数功能。作为网络互连的设备,第三层交换机具有以下特征:

1.转发基于第三层地址的业务流;

2.完全交换功能;

3.可以完成特殊服务,如报文过滤或认证;

4.执行或不执行路由处理。

第三层交换机与传统路由器相比有如下优点:

1.子网间传输带宽可任意分配:传统路由器每个接口连接一个子网,子网通过路由器进行传输的速率被接口的带宽所限制。而三层交换机则不同,它可以把多个端口定义成一个虚拟网,把多个端口组成的虚拟网作为虚拟网接口,该虚拟网内信息可通过组成虚拟网的端口送给三层交换机,由于端口数可任意指定,子网间传输带宽没有限制。

2.合理配置信息资源:由于访问子网内资源速率和访问全局网中资源速率没有区别,子网设置单独服务器的意义不大,通过在全局网中设置服务器群不仅节省费用,更可以合理配置信息资源。

3.降低成本:通常的网络设计用交换机构成子网,用路由器进行子网间互连。目前采用三层交换机进行网络设计,既可以进行任意虚拟子网划分,又可以通过交换机三层路由功能完成子网间通信,为此节省了价格昂贵的路由器。

4.交换机之间连接灵活:作为交换机,它们之间不允许存在回路,作为路由器,又可有多条通路来提高可靠性、平衡负载。三层交换机用生成树算法阻塞造成回路的端口,但进行路由选择时,依然把阻塞掉的通路作为可选路径参与路由选择。
交换机和路由器是性能和功能的矛盾体,交换机交换速度快,但控制功能弱,路由器控制性能强,但报文转发速度慢。解决这个矛盾的最新技术是三层交换,既有交换机线速转发报文能力,又有路由器良好的控制功能。

三层交换机与路由器的主要区别 之所以有人搞不清三层交换机和路由器之间的区别,最根本就是三层交换机也具有“路由”功能,与传统路由器的路由功能总体上是一致的。虽然如此,三层交换机与路由器还是存在着相当大的本质区别的,下面分别予以介绍。

1. 主要功能不同 虽然三层交换机与路由器都具有路由功能,但我们不能因此而把它们等同起来,正如现在许多网络设备同时具备多种传统网络设备功能一样,就如现在有许多宽带路由器不仅具有路由功能,还提供了交换机端口、硬件防火墙功能,但不能把它与交换机或者防火墙等同起来一样。因为这些路由器的主要功能还是路由功能,其它功能只不过是其附加功能,其目的是使设备适用面更广、使其更加实用。这里的三层交换机也一样,它仍是交换机产品,只不过它是具备了一些基本的路由功能的交换机,它的主要功能仍是数据交换。也就是说它同时具备了数据交换和路由
由发两种功能,但其主要功能还是数据交换;而路由器仅具有路由转发这一种主要功能。

2. 主要适用的环境不一样三层交换机的路由功能通常比较简单,因为它所面对的主要是简单的局域网连接。正因如此,三层交换机的路由功能通常比较简单,路由路径远没有路由器那么复杂。它用在局域网中的主要用途还是提供快速数据交换功能,满足局域网数据交换频繁的应用特点。
而路由器则不同,它的设计初哀就是为了满足不同类型的网络连接,虽然也适用于局域网之间的连接,但它的路由功能更多的体现在不同类型网络之间的互联上,如局域网与广域网之间的连接、不同协议的网络之间的连接等,所以路由器主要是用于不同类型的网络之间。它最主要的功能就是路由转发,解决好各种复杂路由路径网络的连接就是它的最终目的,所以路由器的路由功能通常非常强大,不仅适用于同种协议的局域网间,更适用于不同协议的局域网与广域网间。它的优势在于选择最佳路由、负荷分担、链路备份及和其他网络进行路由信息的交换等等路由器所具有功能。

3. 性能体现不一样 从技术上讲,路由器和三层交换机在数据包交换操作上存在着明显区别。路由器一般由基于微处理器的软件路由引擎执行数据包交换,而三层交换机通过硬件执行数据包交换。三层交换机在对第一个数据流进行路由后,它将会产生一个MAC地址与IP地址的映射表,当同样的数据流再次通过时,将根据此表直接从二层通过而不是再次路由,从而消除了路由器进行路由选择而造成网络的延迟,提高了数据包转发的效率。同时,三层交换机的路由查找是针对数据流的,它利用缓存技术,很容易利用ASIC技术来实现,因此,可以大大节约成本,并实现快速转发。而路由器的转发采用最长匹配的方式,实现复杂,通常使用软件来实现,转发效率较低。
正因如此,从整体性能上比较的话,三层交换机的性能要远优于路由器,非常适用于数据交换频繁的局域网中;而路由器虽然路由功能非常强大,但它的数据包转发效率远低于三层交换机,更适合于数据交换不是很频繁的不同类型网络的互联,如局域网与互联网的互联。如果把路由器,特别是高档路由器用于局域网中,则在相当大程度上是一种浪费(就其强大的路由功能而言),而且还不能很好地满足局域网通信性能需求,影响子网间的正常通信。

综上所述,三层交换机与路由器之间还是存在着非常大的本质区别的。无论从哪方面来说,在局域网中进行多子网连接,最好还选用三层交换机,特别是在不同子网数据交换频繁的环境中。一方面可以确保子网间的通信性能需求,另一方面省去了另外购买交换机的投资。当然,如果子网间的通信不是很频繁,采用路由器也无可厚非,也可达到子网安全隔离相互通信的目的。具体要根据实际需求来定

三层交换机的最重要的目的是加快大型局域网内部的数据交换,所具有的路由功能也是为这目的服务的,能够做到一次路由,多次转发。对于数据包转发等规律性的过程由硬件高速实现,而像路由信息更新、路由表维护、路由计算、路由确定等功能,由软件实现。

出于安全和管理方便的考虑,主要是为了减小广播风暴的危害,必须把大型局域网按功能或地域等因素化成一个个小的局域网,这就使得VLAN技术在网络中得到大量应用,而不同VLAN之间的通信都要经过路由器来完成转发,随着网间互访的不断增加。单纯使用路由器来实现网间访问,不但由于端口数量有限,而且路由速度较慢。从而限制了网络的规模和访问速度。基于这种情况三层交换机便应用而生。三层交换机是为IP设计的,接口类型简单;拥有很强二层包处理能力,非常适合用于大型局域网内的数据路由与交换,它既可以工作在协议第三层替代或是部分完成传统路由器的功能,同时又具有几乎第二层交换的速度,且价格相对便宜。

三层交换机出现最重要的目的是加快大型局域网内部的数据交换,所具有的路由功能也多是围绕这个目的而展开的,所以它的路由功能没有同一档次的专业路由器强。毕竟在安全、协议支持等方面还有许多欠缺,并不能完全取代路由器的工作。

在实际中的典型用法是:处于同一个局域网中的各个子网的互联以及局域网中VLAN间的路由,用三层交换机来代替路由。而只有局域网与公网互联之间要实现跨地域的网络访问,才通过专业路由器。

从表面上看,第三层交换机是第二层交换器与路由器的合二为一,然而这种结合并非简单的物理结合,而是各取所长的逻辑结合。其重要表现是,当某一信息源的第一个数据流进行第三层交换后,其中的路由系统会产生一个MAC地址与IP地址的映射表,并将该表存储起来,当同一信息源的后续数据流再次进入交换环境时,交换机将根据第一次产生并保存的地址映射表,直接从第二层由源地址传输到目的地址,不再经过第三路由系统处理,从而消除路由选择的网络延迟。

zz: http://bbs.c114.net/forum.php?mod=viewthread&tid=21962&page=1 传统的交换发生在网络的第二层,即数据链路层;而路由则发生在第三层—网络层。在新的网络中,路由的智能和交换的性能被有机地结合起来,目前三层交换机和多层交换机已在企业级网络骨干和园区网中被大量使用。这不是一个新话题,但很少有人将这些概念之间的关联解读清楚。

  交换

  谈到交换,从广义上讲,任何数据的转发都可以称做交换。当然,现在我们指的是狭义上的交换,仅包括数据链路层的转发。做网络设备的人对交换的理解大多是从交换机开始的,电路交换机在通信网中已经使用了几十年了,而帧交换的设备,尤其是以太网交换机的大规模使用,则是近几年的事情。

  理解交换机

  理解以太网交换机的作用,还要从网桥的原理讲起。传统以太网是共享型的,如果网段上有A、B 、C、D等4台计算机,那么A与B通信的同时,C和D只能是被动收听。假如将缆段分开(即微化),A、B在一段上,C、D在另一段上,那么A和B通信的同时,C和D也可以通信,这样原有10M的带宽从理论上讲就变成20M了。同时,为了确保这两个网段可以互相通信,需要用桥将它们连接起来,桥是具有两块网卡的计算机。

  在整个网络刚刚启动时,桥对网络的拓扑一无所知。这时,假设A发送数据给B,因为网络是广播式的,所以桥也收到了,但桥不知道B在自己的左边还是右边,它就进行缺省转发,即在另外一块网卡上发送这个信息。虽然做了一次无用的转发,但通过这个过程,桥意识到数据的发送者A在自己的左边。当网络上的每一台计算机都发送过数据之后,桥就是智能的了,它了解每一台计算机在哪一个网段上。当A再发送数据给B时,桥就不进行数据转发了,与此同时,C可以发送数据给D。

  从上面的例子可以看出,桥可以减少网络冲突发生的几率,这就是我们使用桥的主要目的,称做减小冲突域。但桥并不能阻止广播,广播信息的隔绝要靠三层的连接设备——路由器。

  按照缆段微化的思想,缆段越多,可用带宽就越高。极限情况是每一台计算机处在一个独立的缆段上,如果网络上有10台计算机,就需要一个10端口的桥将它们连接起来。但实现这样一个桥不太现实,软件转发的速度也跟不上,于是有了交换机,交换机就是将上述多端口的桥硬件或固件化,以达到更低的成本和更高的性能。

  交换机的一个重要的功能是避免交换循环,这就涉及到了STP(Spanning Tree Protocol,生成树协议)。生成树协议的功能是避免数据帧在交换机构成的网络中循环传送。如果网络中有冗余链路的话,STP协议现选出根交换机,然后确定每一台非根交换机到根交换机之间的路径,最后,将此路径上的所有链路置成转发(Forward)状态,其余的交换机之间的连接就是冗余链路,置为阻塞(Block)状态。

  VLAN

  交换机的另外一个重要功能是VLAN(Virtual LAN,虚拟局域网)。VLAN的好处主要有三个:

  ● 端口的分隔。即便在同一个交换机上,处于不同VLAN的端口也是不能通信的。这样一个物理的交换机可以当做多个逻辑的交换机使用。

  ● 网络的安全。不同VLAN不能直接通信,杜绝了广播信息的不安全性。

  ● 灵活的管理。更改用户所属的网络不必换端口和连线,只改软件配置就可以了。

  VLAN可以按端口或MAC地址来划分。

  有时,我们需要在交换机所构成的网络上保持VLAN的配置的一致性。这就需要交换机之间按照VTP(VLAN Trunk Protocol,VLAN骨干协议)交流VLAN信息。VTP协议只在骨干端口(Trunk Port),即交换机之间的端口上运行。

  路由

  路由器是网络间的连接设备,它的重要工作之一是路径选择。这个功能是路由器智能的核心,它是由管理员的配置和一系列的路由算法实现的。

  算法

  路由算法有动静之分,静态路由是一种特殊的路由,它是由管理员手工设定的。手工配置所有的路由虽然可以使网络正常运转,但是也会带来一些局限性。网络拓扑发生变化之后,静态路由不会自动改变,必须有网络管理员的介入。

  缺省路由是静态路由的一种,也是由管理员设置的。在没有找到目标网络的路由表项时,路由器将信息发送到缺省路由器。而动态的算法,顾名思义,是由路由器自动计算出的路由,常说的RIP、OSPF等都是动态算法的典型代表。

  另外,还可以将路由算法分为DV和LS两种。DV(Distance Vector,距离向量)算法将当前路由器的路由信息传送给相邻路由器,相邻路由器将这些信息加入自身的路由表。而LS(Link State,链路状态)算法将链路状态信息传给域内所有的路由器,接收路由器利用这些信息构建网络拓扑图,并利用图论中的最短路径优先算法决定路由。

  相比之下,距离向量算法比较简单,而链路状态算法较为复杂,占用的CPU和内存也要多一些。但是由于链路状态算法采用的是自身的计算结果,所以比较不容易产生路由循环。RIP是DV类算法的典型代表,而OSPF是LS的代表协议。

  四种协议

  四种最常见路由协议是RIP、IGRP、OSPF和EIGRP。

  RIP(Routing Information Protocol,路由信息协议)是使用最广泛的距离向量协议,它是由施乐(Xerox)在20世纪70年代开发的。当时,RIP是XNS(Xerox Network Service,施乐网络服务)协议簇的一部分。TCP/IP版本的RIP是施乐协议的改进版。RIP最大的特点是,其实现原理和配置方法都非常简单。RIP基于跳数计算路由,并且定期向邻居路由器发送更新消息。

  IGRP是Cisco专有的协议,只在Cisco路由器中实现。它也属于距离向量类协议,所以在很多地方与RIP有共同点,比如广播更新等。它和RIP最大的区别表现在度量方法、负载均衡等几方面。IGRP支持多路径上的加权负载均衡,这样,网络的带宽可以得到更加合理的利用。另外,与RIP仅使用跳数作为度量依据不同,IGRP使用了多种参数,构成复合的度量值,这其中可以包含的因素有:带宽、延迟、负载、可靠性和MTU(最大传输单元)等。

  OSPF协议是20世纪80年代后期开发的,20世纪90年代初成为工业标准,是一种典型的链路状态协议。OSPF的主要特性包括:支持VLSM(变长的子网掩码)、收敛迅速、带宽占用率低等。OSPF协议在邻居之间交换链路状态信息,以便路由器建立链路状态数据库(LSD)之后,路由器根据数据库中的信息利用SPF(Shortest
Path First,最短路径优先)算法计算路由表,选择路径的主要依据是带宽。

  EIGRP是IGRP的增强版,它也是Cisco专有的路由协议。EIGRP采用了扩散更新(DUAL)算法,在某种程度上,它和距离向量算法相似,但具有更短的收敛时间和更好的可操作性。作为对IGRP的扩展,EIGRP支持多种可路由的协议,如IP、IPX和AppleTalk等。运行在IP环境时,EIGRP还可以与IGRP进行平滑的连接,因为它们的度量方法是一致的。

  以上4种路由协议都是域内路由协议,它们通常使用在自治系统的内部。当进行自治系统间的连接时,往往采用诸如BGP(Border Gateway Protocols,边界网关协议)和EGP(External Gateway Protocols,外部网关协议)这样的域间路由协议。目前在Internet上使用的域间路由协议是BGP第四版。

  收敛是路由算法选择时所遇到的一个重要问题。收敛时间是指从网络的拓扑结构发生变化到网络上所有的相关路由器都得知这一变化,并且相应地做出改变所需要的时间。这一时间越短,网络变化对全网的扰动就越小。收敛时间过长会导致路由循环的出现。

  全交换网络

  传统的园区网络是路由器加交换机的结构。交换机负责网络内部的传输,划分VLAN可以保证二层的安全性和灵活性,路由器则完成网间的寻址和数据转发工作。

  通常,路由器的性能比交换机要差一些,因为路由器是基于软件的查表转发,而交换机可以实现硬件的直通式转发。但在传统的园区网络中,路由器并不会成为网络的瓶颈。因为80%的数据量是在网络内部的通信,只有20%的数据是做远程访问,也就是说,大多数经过交换机的信息并不经过路由器。这就是传统网络的“80/20”流量模型。

  近年来,由于Internet/Intranet计算模式的兴起,应用被集中管理,而不是像从前那样分散在各个部门的网络中,园区网络的流量模型发生了很大的变化。大量的网络访问是远程的,也就是要经过路由器的,这被称为新的“20/80”流量模型。因此,路由器逐渐成为网络的瓶颈。

  为了从技术上解决这个问题,网络厂商开发了三层交换机,也叫做路由交换机。它是传统交换机的性能和路由器的智能的结合。路由选择仍由路由器完成,但路选的结果被交换机保留在自身的路由缓存中。这样,一个数据流中的第一个数据包经过路由器,后继的所有数据包直接由交换机查表转发。得益于硬件转发,三层交换机可以做到线速路由。

  许多厂家生产的三层交换机本身即是交换机和路由器的结合体,例如一些二层交换机可以选配路由模块,实现三层功能。

  如此看来,企业级网络和园区网的内部就是交换机的天下了,全交换的网络适应新的流量模型,彻底克服了传统网络的路由器瓶颈,极大地提高了网络的效率。当然,路由器并没有失业,仍然被用在远程连接、拨号访问等场合。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: