您的位置:首页 > 运维架构 > Linux

Linux下NAT功能的实现 do_bindings()

2014-11-12 15:39 204 查看

Linux下NAT功能的实现
来源: ChinaUnix博客  日期: 2009.04.30 11:58 (共有条评论)

我要评论
本文档的Copyleft归yfydz所有,使用GPL发布,可以自由拷贝、转载,转载时请保持文档的完整性,严禁用于任何商业用途。

msn:

yfydz_no1@hotmail.com

来源:

http://yfydz.cublog.cn

1. 前言



在2.4/2.6内核的Linux中的防火墙代码netfilter中支持源NAT(SNAT)和目的NAT

(DNAT),基本可以满足各种类型的NAT需求,本文介绍Linux下的NAT的具体实现过程,所引的内核代码版本2.4.26,NAT原理部分不在此介绍,有兴趣者可先看我的另一篇NAT原理介绍的文章。

2. NAT hook



NAT操作也是以netfilter节点形式挂接在相应的处理点上的,DNAT挂接在NF_IP_PRE_ROUTING点上,优先级高于FILTER低于MANGLE,表示在mangle表后处理,但在filter表前处理数据包;SNAT挂接在NF_IP_POST_ROUTING点上,优先级低于FILTER,表示在filter表后面处理数据包。

在net/ipv4/netfilter/ip_nat_standalone.c中:

目的NAT的hook节点:

/* Before packet filtering, change destination */

static struct nf_hook_ops ip_nat_in_ops

= { { NULL, NULL }, ip_nat_fn, PF_INET, NF_IP_PRE_ROUTING, NF_IP_PRI_NAT_DST };

源NAT的hook节点:

/* After packet filtering, change source */

static struct nf_hook_ops ip_nat_out_ops

= { { NULL, NULL }, ip_nat_out, PF_INET, NF_IP_POST_ROUTING, NF_IP_PRI_NAT_SRC};

include/linux/netfilter_ipv4.h

enum nf_ip_hook_priorities {

NF_IP_PRI_FIRST = INT_MIN,

NF_IP_PRI_CONNTRACK = -200, // 连接跟踪

NF_IP_PRI_MANGLE = -150, // mangle table

NF_IP_PRI_NAT_DST = -100, // DNAT

NF_IP_PRI_FILTER = 0, // filter table

NF_IP_PRI_NAT_SRC = 100, // SNAT

NF_IP_PRI_LAST = INT_MAX,

};

ip_nat_fn()是NAT hook的主处理函数,ip_nat_out()函数也是在数据合法性检查后调用ip_nat_fn()函数。

3. NAT处理相关结构

在状态连接结构struct ip_conntrack中包含了关于NAT的相关结构(include/linux/netfilter/ip_conntrack.h):

struct ip_conntrack

{

......

#ifdef CONFIG_IP_NF_NAT_NEEDED

struct {

struct ip_nat_info info;

union ip_conntrack_nat_help help;

#if defined(CONFIG_IP_NF_TARGET_MASQUERADE) || \

defined(CONFIG_IP_NF_TARGET_MASQUERADE_MODULE)

int masq_index;

#endif

} nat;

#endif /* CONFIG_IP_NF_NAT_NEEDED */

};

其中比较重要的是struct ip_nat_info结构,而union ip_conntrack_nat_help是各协议NAT时需要特殊处理的结构描述,不过在2.4.26内核中都没定义,联合为空。

#define IP_NAT_MAX_MANIPS (2*3)

// 此结构描述数据包中要修改部分的信息

struct ip_nat_info_manip

{

/* The direction. */

u_int8_t direction;

/* Which hook the manipulation happens on. */

u_int8_t hooknum;

/* The manipulation type. */

u_int8_t maniptype; // 修改类型: SNAT / DNAT

// 连接的数据包要修改的信息,包括地址和上层的协议信息

/* Manipulations to occur at each conntrack in this dirn. */

struct ip_conntrack_manip manip;

};

/* The structure embedded in the conntrack structure. */

struct ip_nat_info

{

/* Set to zero when conntrack created: bitmask of maniptypes */

int initialized; // 实际最多用两位

unsigned int num_manips;

/* Manipulations to be done on this conntrack. */

// 每个最多可以记录6个NAT信息

struct ip_nat_info_manip manips[IP_NAT_MAX_MANIPS];

struct ip_nat_hash bysource, byipsproto; // 按地址和协议的HASH表

/* Helper (NULL if none). */

struct ip_nat_helper *helper; // 多连接协议的NAT时的helper

struct ip_nat_seq seq[IP_CT_DIR_MAX]; // 描述两个方向的序列号变化情况

};

4. ip_nat_fn()函数



ip_nat_fn()是NAT hook的基本处理函数(net/ipv4/netfilter/ip_nat_standalone.c),目的是建立连接的NAT info信息, 并修改数据包中的相应部分。

static unsigned int

ip_nat_fn(unsigned int hooknum,

struct sk_buff **pskb,

const struct net_device *in,

const struct net_device *out,

int (*okfn)(struct sk_buff *))

{

struct ip_conntrack *ct;

enum ip_conntrack_info ctinfo;

struct ip_nat_info *info;

/* maniptype == SRC for postrouting. */

// 根据hooknum来确定进行哪种方式的NAT,netfilter在hook点是能进行哪种NAT是固定的:

// NF_IP_PRE_ROUTING点进行的是DNAT,maniptype=1

// NF_IP_POST_ROUTING点进行的是SNAT,maniptype=0

enum ip_nat_manip_type maniptype = HOOK2MANIP(hooknum);

/* We never see fragments: conntrack defrags on pre-routing

and local-out, and ip_nat_out protects post-routing. */

IP_NF_ASSERT(!((*pskb)->nh.iph->frag_off

& htons(IP_MF|IP_OFFSET)));

(*pskb)->nfcache |= NFC_UNKNOWN;

/* If we had a hardware checksum before, it's now invalid */

if ((*pskb)->ip_summed == CHECKSUM_HW)

(*pskb)->ip_summed = CHECKSUM_NONE;

// 进行NAT的包必须都经过的连接跟踪处理,如果找不到该包对应的连接,不对其进行NAT处理

// 连接跟踪优先级最高,是数据包一进入netfilter就要进行处理的

ct = ip_conntrack_get(*pskb, &ctinfo);

/* Can't track? It's not due to stress, or conntrack would

have dropped it. Hence it's the user's responsibilty to

packet filter it out, or implement conntrack/NAT for that

protocol. 8) --RR */

if (!ct) {

/* Exception: ICMP redirect to new connection (not in

hash table yet). We must not let this through, in

case we're doing NAT to the same network. */

struct iphdr *iph = (*pskb)->nh.iph;

struct icmphdr *hdr = (struct icmphdr *)

((u_int32_t *)iph + iph->ihl);

if (iph->protocol == IPPROTO_ICMP

&& hdr->type == ICMP_REDIRECT)

return NF_DROP;

return NF_ACCEPT;

}

switch (ctinfo) {

//对于相关连接、相关连接的回复、新连接的包进行NAT信息的构建

case IP_CT_RELATED:

case IP_CT_RELATED+IP_CT_IS_REPLY:

if ((*pskb)->nh.iph->protocol == IPPROTO_ICMP) {

return icmp_reply_translation(*pskb, ct, hooknum,

CTINFO2DIR(ctinfo));

}

/* Fall thru... (Only ICMPs can be IP_CT_IS_REPLY) */

case IP_CT_NEW:

info = &ct->nat.info;

WRITE_LOCK(&ip_nat_lock);

/* Seen it before? This can happen for loopback, retrans,

or local packets.. */

// 检查是否已经进行相应方向的初始化,注意初始化可以是两个方向同时进行的

// 这就是说一个数据包可以同时修改源和目的, 这在服务器和内网在相同网段时会用到,

// netfilter已经能自动处理这种情况,根本不需要进行修改,以前我的理解有误,以为

// 只能修改一个方向的数据

if (!(info->initialized & (1 local traffic with

* CONFIG_IP_NF_NAT_LOCAL disabled.

*/

&& !(ct->status & IPS_CONFIRMED)

#endif

) {

unsigned int ret;

if (ct->master

&& master_ct(ct)->nat.info.helper

&& master_ct(ct)->nat.info.helper->expect) {

// 多连接协议情况, 如果是子连接, 调用主连接相关的expect函数处理填写NAT info信息

ret = call_expect(master_ct(ct), pskb,

hooknum, ct, info);

} else {

#ifdef CONFIG_IP_NF_NAT_LOCAL

/* LOCAL_IN hook doesn't have a chain! */

if (hooknum == NF_IP_LOCAL_IN)

ret = alloc_null_binding(ct, info,

hooknum);

else

#endif

// 否则根据NAT规则表查找规则, 执行规则的动作: SNAT或DNAT, 填写NAT info信息

ret = ip_nat_rule_find(pskb, hooknum, in, out,

ct, info);

}

// 返回值不是接受的话直接返回, 数据包将被丢弃

if (ret != NF_ACCEPT) {

WRITE_UNLOCK(&ip_nat_lock);

return ret;

}

} else

DEBUGP("Already setup manip %s for ct %p\n",

maniptype == IP_NAT_MANIP_SRC ? "SRC" : "DST",

ct);

WRITE_UNLOCK(&ip_nat_lock);

break;

default:

// 连接的NAT信息已经填好, 直接使用

/* ESTABLISHED */

IP_NF_ASSERT(ctinfo == IP_CT_ESTABLISHED

|| ctinfo == (IP_CT_ESTABLISHED+IP_CT_IS_REPLY));

info = &ct->nat.info;

}

IP_NF_ASSERT(info);

// 根据NAT info信息对数据包的相应部分进行修改

return do_bindings(ct, ctinfo, info, hooknum, pskb);

}

4. do_bindings()函数

do_bindings()是完成具体的NAT操作部分的函数(net/ipv4/netfilter/ip_nat_core.c),修改地址端口等信息,必要时修改数据内容部分信息(这种情况下可能数据包长度会变,序列号/确认号相应会改变,这些都累计进NAT info参数中),并重新各种校验和(TCP/UDP/ICMP校验和,IP头校验和):

/* Do packet manipulations according to binding. */

unsigned int

do_bindings(struct ip_conntrack *ct,

enum ip_conntrack_info ctinfo,

struct ip_nat_info *info,

unsigned int hooknum,

struct sk_buff **pskb)

{

unsigned int i;

struct ip_nat_helper *helper;

// 数据方向:original or reply

enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);

// 是否是TCP协议,TCP协议要处理序列号/确认号

int is_tcp = (*pskb)->nh.iph->protocol == IPPROTO_TCP;

/* Need nat lock to protect against modification, but neither

conntrack (referenced) and helper (deleted with

synchronize_bh()) can vanish. */

READ_LOCK(&ip_nat_lock);

for (i = 0; i num_manips; i++) {

/* raw socket (tcpdump) may have clone of incoming

skb: don't disturb it --RR */

if (skb_cloned(*pskb) && !(*pskb)->sk) {

struct sk_buff *nskb = skb_copy(*pskb, GFP_ATOMIC);

if (!nskb) {

READ_UNLOCK(&ip_nat_lock);

return NF_DROP;

}

kfree_skb(*pskb);

*pskb = nskb;

}

// 检查数据包方向和hooknum是否是与NAT info中规定的一致

if (info->manips.direction == dir

&& info->manips.hooknum == hooknum) {

DEBUGP("Mangling %p: %s to %u.%u.%u.%u %u\n",

*pskb,

info->manips.maniptype == IP_NAT_MANIP_SRC

? "SRC" : "DST",

NIPQUAD(info->manips.manip.ip),

htons(info->manips.manip.u.all));

// 进行具体的NAT操作,修改IP头的地址、TCP、UDP等的端口

manip_pkt((*pskb)->nh.iph->protocol,

(*pskb)->nh.iph,

(*pskb)->len,

&info->manips.manip,

info->manips.maniptype,

&(*pskb)->nfcache);

}

}

helper = info->helper;

READ_UNLOCK(&ip_nat_lock);

// 多连接协议

if (helper) {

struct ip_conntrack_expect *exp = NULL;

struct list_head *cur_item;

int ret = NF_ACCEPT;

int helper_called = 0;

DEBUGP("do_bindings: helper existing for (%p)\n", ct);

/* Always defragged for helpers */

IP_NF_ASSERT(!((*pskb)->nh.iph->frag_off

& htons(IP_MF|IP_OFFSET)));

/* Have to grab read lock before sibling_list traversal */

READ_LOCK(&ip_conntrack_lock);

// 主连接的子连接链表是倒着搜索的

list_for_each_prev(cur_item, &ct->sibling_list) {

// 取得期待的连接信息

exp = list_entry(cur_item, struct ip_conntrack_expect,

expected_list);

/* if this expectation is already established, skip */

// 期待的子连接已经到了,不用再处理

if (exp->sibling)

continue;

// 检查数据包是否是要修改的数据包,对于UDP、ICMP函数返回始终是1,TCP协议是才可能返回0

if (exp_for_packet(exp, pskb)) {

/* FIXME: May be true multiple times in the

* case of UDP!! */

DEBUGP("calling nat helper (exp=%p) for packet\n", exp);

// 调用多连接协议的help函数修改内容部分的相关数据

ret = helper->help(ct, exp, info, ctinfo,

hooknum, pskb);

if (ret != NF_ACCEPT) {

READ_UNLOCK(&ip_conntrack_lock);

return ret;

}

helper_called = 1;

}

}

/* Helper might want to manip the packet even when there is no

* matching expectation for this packet */

if (!helper_called && helper->flags & IP_NAT_HELPER_F_ALWAYS) {

DEBUGP("calling nat helper for packet without expectation\n");

ret = helper->help(ct, NULL, info, ctinfo,

hooknum, pskb);

if (ret != NF_ACCEPT) {

READ_UNLOCK(&ip_conntrack_lock);

return ret;

}

}

READ_UNLOCK(&ip_conntrack_lock);

/* Adjust sequence number only once per packet

* (helper is called at all hooks) */

// 调整TCP的序列号

if (is_tcp && (hooknum == NF_IP_POST_ROUTING

|| hooknum == NF_IP_LOCAL_IN)) {

DEBUGP("ip_nat_core: adjusting sequence number\n");

/* future: put this in a l4-proto specific function,

* and call this function here. */

ip_nat_seq_adjust(*pskb, ct, ctinfo);

}

return ret;

} else

return NF_ACCEPT;

/* not reached */

}

manip_pkt()函数(net/ipv4/netfilter/ip_nat_core.c)相对就比较简单了,先修改传输层部分的数据参数(如TCP、UDP端口),再修改IP头中的地址:

static void

manip_pkt(u_int16_t proto, struct iphdr *iph, size_t len,

const struct ip_conntrack_manip *manip,

enum ip_nat_manip_type maniptype,

__u32 *nfcache)

{

*nfcache |= NFC_ALTERED;

// find_nat_proto函数始终会返回一个协议,因为如果不是能处理的协议,将

// 返回缺省的未知协议处理,由此也可知在IP上层协议NAT处理结构中的

// manip_pkt()函数不能为空,这个函数可以什么都不作,但不能为NULL

find_nat_proto(proto)->manip_pkt(iph, len, manip, maniptype);

// 根据NAT类型,修改源或目的IP地址

if (maniptype == IP_NAT_MANIP_SRC) {

iph->check = ip_nat_cheat_check(~iph->saddr, manip->ip,

iph->check);

iph->saddr = manip->ip;

} else {

iph->check = ip_nat_cheat_check(~iph->daddr, manip->ip,

iph->check);

iph->daddr = manip->ip;

}

#if 0

if (ip_fast_csum((u8 *)iph, iph->ihl) != 0)

DEBUGP("IP: checksum on packet bad.\n");

if (proto == IPPROTO_TCP) {

void *th = (u_int32_t *)iph + iph->ihl;

if (tcp_v4_check(th, len - 4*iph->ihl, iph->saddr, iph->daddr,

csum_partial((char *)th, len-4*iph->ihl, 0)))

DEBUGP("TCP: checksum on packet bad\n");

}

#endif

}

6. SNAT、DNAT目标函数



前面在ip_nat_fn()函数中调用的ip_nat_rule_find()用来查找NAT规则,执行规则的动作,规则目标不是SNAT就是DNAT,该目标的具体实现在net/ipv4/netfilter/ip_nat_rule.c中。不论是SNAT还是DNAT规则,其目标函数最终都是调用ip_nat_setup_info()函数来建立连接的NAT info信息。

net/ipv4/netfilter/ip_nat_rule.c:

/* Source NAT */

static unsigned int ipt_snat_target(struct sk_buff **pskb,

unsigned int hooknum,

const struct net_device *in,

const struct net_device *out,

const void *targinfo,

void *userinfo)

{

struct ip_conntrack *ct;

enum ip_conntrack_info ctinfo;

IP_NF_ASSERT(hooknum == NF_IP_POST_ROUTING);

ct = ip_conntrack_get(*pskb, &ctinfo);

/* Connection must be valid and new. */

IP_NF_ASSERT(ct && (ctinfo == IP_CT_NEW || ctinfo == IP_CT_RELATED));

IP_NF_ASSERT(out);

// 只有新连接才进行NAT info的建立

// targinfo实际是struct ip_nat_multi_range结构指针,记录转换后的

// 地址、端口等信息, 一个NAT规则可以转换到可以转换到多个地址端口上

return ip_nat_setup_info(ct, targinfo, hooknum);

}

static unsigned int ipt_dnat_target(struct sk_buff **pskb,

unsigned int hooknum,

const struct net_device *in,

const struct net_device *out,

const void *targinfo,

void *userinfo)

{

struct ip_conntrack *ct;

enum ip_conntrack_info ctinfo;

#ifdef CONFIG_IP_NF_NAT_LOCAL

IP_NF_ASSERT(hooknum == NF_IP_PRE_ROUTING

|| hooknum == NF_IP_LOCAL_OUT);

#else

IP_NF_ASSERT(hooknum == NF_IP_PRE_ROUTING);

#endif

ct = ip_conntrack_get(*pskb, &ctinfo);

/* Connection must be valid and new. */

IP_NF_ASSERT(ct && (ctinfo == IP_CT_NEW || ctinfo == IP_CT_RELATED));

// 只有新连接才进行NAT info的建立

// targinfo实际是struct ip_nat_multi_range结构指针,记录转换后的

// 地址、端口等信息, 一个NAT规则可以转换到可以转换到多个地址端口上

return ip_nat_setup_info(ct, targinfo, hooknum);

}

......

int ip_nat_rule_find(struct sk_buff **pskb,

unsigned int hooknum,

const struct net_device *in,

const struct net_device *out,

struct ip_conntrack *ct,

struct ip_nat_info *info)

{

int ret;

ret = ipt_do_table(pskb, hooknum, in, out, &nat_table, NULL);

if (ret == NF_ACCEPT) {

// 数据接受但有没有初始化,分配一个NULL binding,实际不作任何修改,也就是

// 说对该包没有相应的NAT规则对于,不需要进行NAT处理

if (!(info->initialized & (1 nat.info;

// 如果info->initialized不为0,表示已经初始化过了

int in_hashes = info->initialized;

MUST_BE_WRITE_LOCKED(&ip_nat_lock);

IP_NF_ASSERT(hooknum == NF_IP_PRE_ROUTING

|| hooknum == NF_IP_POST_ROUTING

|| hooknum == NF_IP_LOCAL_OUT);

IP_NF_ASSERT(info->num_manips initialized & (1 tuplehash[IP_CT_DIR_ORIGINAL].tuple) */

// 根据连接的回应方向的tuple进行反转得到原始方向的tuple

invert_tuplepr(&orig_tp,

&conntrack->tuplehash[IP_CT_DIR_REPLY].tuple);

#if 0

{

unsigned int i;

DEBUGP("Hook %u (%s), ", hooknum,

HOOK2MANIP(hooknum)==IP_NAT_MANIP_SRC ? "SRC" : "DST");

DUMP_TUPLE(&orig_tp);

DEBUGP("Range %p: ", mr);

for (i = 0; i rangesize; i++) {

DEBUGP("%u:%s%s%s %u.%u.%u.%u - %u.%u.%u.%u %u - %u\n",

i,

(mr->range.flags & IP_NAT_RANGE_MAP_IPS)

? " MAP_IPS" : "",

(mr->range.flags

& IP_NAT_RANGE_PROTO_SPECIFIED)

? " PROTO_SPECIFIED" : "",

(mr->range.flags & IP_NAT_RANGE_FULL)

? " FULL" : "",

NIPQUAD(mr->range.min_ip),

NIPQUAD(mr->range.max_ip),

mr->range.min.all,

mr->range.max.all);

}

}

#endif

do {

// 找一个未使用的进行了转换后的tuple结构参数,mr是NAT规则确定的要转换后的

// 地址端口参数, new_tuple保持转换后的连接原始方向的tuple

if (!get_unique_tuple(&new_tuple, &orig_tp, mr, conntrack,

hooknum)) {

DEBUGP("ip_nat_setup_info: Can't get unique for %p.\n",

conntrack);

return NF_DROP;

}

#if 0

DEBUGP("Hook %u (%s) %p\n", hooknum,

HOOK2MANIP(hooknum)==IP_NAT_MANIP_SRC ? "SRC" : "DST",

conntrack);

DEBUGP("Original: ");

DUMP_TUPLE(&orig_tp);

DEBUGP("New: ");

DUMP_TUPLE(&new_tuple);

#endif

/* We now have two tuples (SRCIP/SRCPT/DSTIP/DSTPT):

the original (A/B/C/D') and the mangled one (E/F/G/H').

We're only allowed to work with the SRC per-proto

part, so we create inverses of both to start, then

derive the other fields we need. */

/* Reply connection: simply invert the new tuple

(G/H/E/F') */

// 建立连接地址转换后的反向的tuple,这使netfilter能自动对连接的反方向数据

// 进行处理,也就是说定义了一条SNAT规则后,并不需要再定义一条DNAT规则来处理

// 返回的数据,netfilter已经自动处理了

invert_tuplepr(&reply, &new_tuple);

/* Alter conntrack table so it recognizes replies.

If fail this race (reply tuple now used), repeat. */

// 修改连接参数使能正确识别返回数据,如果reply已经对应一条连接

// ip_conntrack_alter_reply()函数返回0,表示要继续修改转换后的参数值

} while (!ip_conntrack_alter_reply(conntrack, &reply));

/* FIXME: We can simply used existing conntrack reply tuple

here --RR */

/* Create inverse of original: C/D/A/B' */

invert_tuplepr(&inv_tuple, &orig_tp);

/* Has source changed?. */

// 源NAT

if (!ip_ct_tuple_src_equal(&new_tuple, &orig_tp)) {

/* In this direction, a source manip. */

// 连接正方向是SNAT

info->manips[info->num_manips++] =

((struct ip_nat_info_manip)

{ IP_CT_DIR_ORIGINAL, hooknum,

IP_NAT_MANIP_SRC, new_tuple.src });

IP_NF_ASSERT(info->num_manips manips[info->num_manips++] =

((struct ip_nat_info_manip)

{ IP_CT_DIR_REPLY, opposite_hook[hooknum],

IP_NAT_MANIP_DST, orig_tp.src });

IP_NF_ASSERT(info->num_manips manips[info->num_manips++] =

((struct ip_nat_info_manip)

{ IP_CT_DIR_ORIGINAL, hooknum,

IP_NAT_MANIP_DST, reply.src });

IP_NF_ASSERT(info->num_manips manips[info->num_manips++] =

((struct ip_nat_info_manip)

{ IP_CT_DIR_REPLY, opposite_hook[hooknum],

IP_NAT_MANIP_SRC, inv_tuple.src });

IP_NF_ASSERT(info->num_manips master)

info->helper = LIST_FIND(&helpers, helper_cmp, struct ip_nat_helper *,

&reply);

/* It's done. */

// 完成该方向的NAT info初始化

info->initialized |= (1 bysource.conntrack);

replace_in_hashes(conntrack, info);

} else {

place_in_hashes(conntrack, info);

}

return NF_ACCEPT;

}

8. 结论

Linux下的NAT流程可以大致表示如下:

hook_ops

|

V

ip_nat_fn()

|

V 否

是否是新连接------------+

| |

| 是 |

| |

V |

ip_nat_rule_find() |

| |

ip_snat_taget() |

ip_dnat_target() |

| |

V |

ip_nat_setup_info() |

| |

|

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: