您的位置:首页 > 其它

算法学习_分治法

2014-11-01 17:35 127 查看
一、分治法包含三个步骤:

(1)分解:在分解阶段,将数据分解为更小,更容易管理的部分

(2)求解:对每个分解出的部分进行处理(递归)

(3)合并:将每部分处理的结果进行合并

二、常用实例:

(1)归并排序

(2)二分查找

(3)幂次方

(4)斐波那契数列

(5).......

下面为代码实现:

#coding=gb2312
import unittest
import random
import bisect

#############################
# 算法学习:分治法
# 作者:chuanchuan608
# 时间: 2014/11/1
#############################

# Example 1 MergeSort start

def MergeSort(L):
if len(L) < 2:
return L[:]
else:
# divide
middle = len(L)>>1; # attention
# Conqure
left = MergeSort(L[:middle])
right = MergeSort(L[middle:])
# Combine
together = Merge(left, right)

return together

def Merge(left, right):
# alloc space to store result
result = []
i, j = 0, 0

while i < len(left) and j < len(right):
# compare the first two element,which is the small one,
# of each two sublists
if left[i] <= right[j]:
result.append(left[i])
i = i + 1
else:
result.append(right[j])
j = j + 1
while (i < len(left)):
result.append(left[i])
i = i + 1
while (j < len(right)):
result.append(right[j])
j = j + 1

return result
# Example 1 MergeSort end

############################################################
# binarySearch

def BinarySearch(L, e, left, right):
# divide
#if right < left:
#    return 0
if right - left < 2:
if L[left] == e: return left
if L[right] == e: return right
return 0 # 未找到,主要针对测试用例设置bisect 未找到返回0
mid = left + (right - left)>>1
# conqure

if L[mid] > e:
return BinarySearch(L, e, left, mid - 1)
elif L[mid] < e:
return BinarySearch(L, e, mid + 1, right)
elif L[mid] == e:
return mid

def Serach(L, e):
return BinarySearch(L, e, 0, len(L) - 1)
#############################################################

# PowData   x^n = x*x*x*x...*x ; O(n)----DCC----->O(lg(n))
#############################################################
def PowData(X, N):
import sys
if N < 0: sys.exit(1)
if 0 == X: return X
if 0 == N: return 1

if 1 == N:
return X
else:
if 0 == (N % 2):
return PowData(X, N>>1) * PowData(X, N>>1)
else:
return PowData(X, (N - 1)>>1) * PowData(X, (N - 1)>>1) * X

class test(unittest.TestCase):
testLst = []
def test_mergesort(self):
testExampleOne = [random.randrange(0, 10000000) for _ in range(10000000)]
self.assertEqual(MergeSort(testExampleOne), sorted(testExampleOne))
self.assertEqual(PowData(2, 10), pow(2, 10))
if __name__ == '__main__':
print(Serach([1, 2, 5, 1000], 1000) == bisect.bisect_left([1, 2, 5, 1000], 1000))
unittest.main()


而斐波那契数列的算法分析,通过幂次方的方法使得算法复杂度从指数级转向对数级。下面为转载一篇斐波那契数列的算法分析:
http://www.cnblogs.com/CCBB/archive/2011/09/14/1443441.html,该作者分析的非常详细和全面。
斐波那契数列算法分析
背景:

假定你有一雄一雌一对刚出生的兔子,它们在长到一个月大小时开始交配,在第二月结束时,雌兔子产下另一对兔子,过了一个月后它们也开始繁殖,如此这般持续下去。每只雌兔在开始繁殖时每月都产下一对兔子,假定没有兔子死亡,在一年后总共会有多少对兔子?

在一月底,最初的一对兔子交配,但是还只有1对兔子;在二月底,雌兔产下一对兔子,共有2对兔子;在三月底,最老的雌兔产下第二对兔子,共有3对兔子;在四月底,最老的雌兔产下第三对兔子,两个月前生的雌兔产下一对兔子,共有5对兔子;……如此这般计算下去,兔子对数分别是:1,
1, 2, 3, 5, 8, 13, 21, 34, 55,89, 144, ...看出规律了吗?从第3个数目开始,每个数目都是前面两个数目之和。这就是著名的斐波那契(Fibonacci)数列。

有趣问题:

1,有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?

答:这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种方法……所以,1,2,3,5,8,13……登上十级,有89种。

2,数列中相邻两项的前项比后项的极限是多少,就是问,当n趋于无穷大时,F(n)/F(n+1)的极限是多少?

答:这个可由它的通项公式直接得到,极限是(-1+√5)/2,这个就是所谓的黄金分割点,也是代表大自然的和谐的一个数字。

数学表示:

Fibonacci数列的数学表达式就是:

F(n) = F(n-1) + F(n-2)
F(1) = 1
F(2) = 1

递归程序1:

Fibonacci数列可以用很直观的二叉递归程序来写,用C++语言的描述如下:

long fib1(int n)

{

if (n <= 2)

{

return 1;

}

else

{

return fib1(n-1) + fib1(n-2);

}

}

看上去程序的递归使用很恰当,可是在用VC2005的环境下测试n=37的时候用了大约3s,而n=45的时候基本下楼打完饭也看不到结果……显然这种递归的效率太低了!!

递归效率分析:

例如,用下面一个测试函数:

long fib1(int n, int* arr)

{

arr
++;


if (n <= 2)

{

return 1;

}

else

{

return fib1(n-1, arr) + fib1(n-2, arr);

}

}

这时,可以得到每个fib(i)被计算的次数:

fib(10) = 1 fib(9) = 1 fib(8) = 2 fib(7) = 3

fib(6) = 5 fib(5) = 8 fib(4) = 13 fib(3) = 21

fib(2) = 34 fib(1) = 55 fib(0) = 34

可见,计算次数呈反向的Fibonacci数列,这显然造成了大量重复计算。

我们令T(N)为函数fib(n)的运行时间,当N>=2的时候我们分析可知:

T(N) = T(N-1) + T(N-2) + 2
而fib(n) = fib(n-1) + fib(n-2),所以有T(N) >= fib(n),归纳法证明可得:

fib(N) < (5/3)^N
当N>4时,fib(N)>=
(3/2)^N

标准写法:


显然这个O(3/2)^N 是以指数增长的算法,基本上是最坏的情况。

其实,这违反了递归的一个规则:合成效益法则。

合成效益法则(Compound interest rule):在求解一个问题的同一实例的时候,切勿在不同的递归调用中做重复性的工作。

所以在上面的代码中调用fib(N-1)的时候实际上同时计算了fib(N-2)。这种小的重复计算在递归过程中就会产生巨大的运行时间。

递归程序2:

用一叉递归程序就可以得到近似线性的效率,用C++语言的描述如下:

long fib(int n, long a, long b, int count)

{

if (count == n)

return b;

return fib(n, b, a+b, ++count);

}

long fib2(int n)

{

return fib(n, 0, 1, 1);

}

这种方法虽然是递归了,但是并不直观,而且效率上相比下面的迭代循环并没有优势。

迭代解法:

Fibonacci数列用迭代程序来写也很容易,用C++语言的描述如下:

//也可以用数组将每次计算的f(n)存储下来,用来下次计算用(空间换时间)

long fib3 (int n)

{

long x = 0, y = 1;

for (int j = 1; j < n; j++)

{

y = x + y;

x = y - x;

}

return y;

}

这时程序的效率显然为ON,N
= 45的时候<1s就能得到结果。


矩阵乘法:

我们将数列写成:

Fibonacci[0] = 0,Fibonacci[1] = 1

Fibonacci
= Fibonacci[n-1] + Fibonacci[n-2] (n >= 2)

可以将它写成矩阵乘法形式:



将右边连续的展开就得到:



下面就是要用O(log(n))的算法计算:


显然用二分法来求,结合一些面向对象的概念,C++代码如下:

class Matrix
{
public:
long matr[2][2];

Matrix(const Matrix&rhs);
Matrix(long a, long b, long c, long d);
Matrix& operator=(const Matrix&);
friend Matrix operator*(const Matrix& lhs, const Matrix& rhs)
{
Matrix ret(0,0,0,0);
ret.matr[0][0] = lhs.matr[0][0]*rhs.matr[0][0] + lhs.matr[0][1]*rhs.matr[1][0];
ret.matr[0][1] = lhs.matr[0][0]*rhs.matr[0][1] + lhs.matr[0][1]*rhs.matr[1][1];
ret.matr[1][0] = lhs.matr[1][0]*rhs.matr[0][0] + lhs.matr[1][1]*rhs.matr[1][0];
ret.matr[1][1] = lhs.matr[1][0]*rhs.matr[0][1] + lhs.matr[1][1]*rhs.matr[1][1];
return ret;
}
};

Matrix::Matrix(long a, long b, long c, long d)
{
this->matr[0][0] = a;
this->matr[0][1] = b;
this->matr[1][0] = c;
this->matr[1][1] = d;
}

Matrix::Matrix(const Matrix &rhs)
{
this->matr[0][0] = rhs.matr[0][0];
this->matr[0][1] = rhs.matr[0][1];
this->matr[1][0] = rhs.matr[1][0];
this->matr[1][1] = rhs.matr[1][1];
}

Matrix& Matrix::operator =(const Matrix &rhs)
{
this->matr[0][0] = rhs.matr[0][0];
this->matr[0][1] = rhs.matr[0][1];
this->matr[1][0] = rhs.matr[1][0];
this->matr[1][1] = rhs.matr[1][1];
return *this;
}

Matrix power(const Matrix& m, int n)
{
if (n == 1)
return m;
if (n%2 == 0)
return power(m*m, n/2);
else
return power(m*m, n/2) * m;
}

long fib4 (int n)
{
Matrix matrix0(1, 1, 1, 0);
matrix0 = power(matrix0, n-1);
return matrix0.matr[0][0];
}

这时程序的效率为Olog(N)

公式解法:

O1的时间就能求得到F(n)了:




注意:其中[x]表示取距离x最近的整数。

用C++写的代码如下:

long fib5(int n)

{

double z = sqrt(5.0);

double x = (1 + z)/2;

double y = (1 - z)/2;

return (pow(x, n) - pow(y, n))/z + 0.5;

}

这个与数学库实现开方和乘方本身效率有关的,我想应该还是在O(log(n))的效率。

总结:

上面给出了5中求解斐波那契数列的方法,用测试程序主函数如下:

int main()

{

cout << fib1(45) << endl;

cout << fib2(45) << endl;

cout << fib3(45) << endl;

cout << fib4(45) << endl;

cout << fib5(45) << endl;

return 0;

}

函数fib1会等待好久,其它的都能很快得出结果,并且相同为:1134903170。

而后面两种只有在n = 1000000000的时候会显示出优势。由于我的程序都没有涉及到高精度,所以要是求大数据的话,可以通过取模来获得结果的后4位来测试效率与正确性。

另外斐波那契数列在实际工作中应该用的很少,尤其是当数据n很大的时候(例如:1000000000),所以综合考虑基本普通的非递归O(n)方法就很好了,没有必要用矩阵乘法。

附录:

程序全部源码:

#include <iostream>
#include <vector>
#include <string>
#include <cmath>
#include <fstream>

using namespace std;

class Matrix
{
public:
long matr[2][2];

Matrix(const Matrix&rhs);
Matrix(long a, long b, long c, long d);
Matrix& operator=(const Matrix&);
friend Matrix operator*(const Matrix& lhs, const Matrix& rhs)
{
Matrix ret(0,0,0,0);
ret.matr[0][0] = lhs.matr[0][0]*rhs.matr[0][0] + lhs.matr[0][1]*rhs.matr[1][0];
ret.matr[0][1] = lhs.matr[0][0]*rhs.matr[0][1] + lhs.matr[0][1]*rhs.matr[1][1];
ret.matr[1][0] = lhs.matr[1][0]*rhs.matr[0][0] + lhs.matr[1][1]*rhs.matr[1][0];
ret.matr[1][1] = lhs.matr[1][0]*rhs.matr[0][1] + lhs.matr[1][1]*rhs.matr[1][1];
return ret;
}
};

Matrix::Matrix(long a, long b, long c, long d)
{
this->matr[0][0] = a;
this->matr[0][1] = b;
this->matr[1][0] = c;
this->matr[1][1] = d;
}

Matrix::Matrix(const Matrix &rhs)
{
this->matr[0][0] = rhs.matr[0][0];
this->matr[0][1] = rhs.matr[0][1];
this->matr[1][0] = rhs.matr[1][0];
this->matr[1][1] = rhs.matr[1][1];
}

Matrix& Matrix::operator =(const Matrix &rhs)
{
this->matr[0][0] = rhs.matr[0][0];
this->matr[0][1] = rhs.matr[0][1];
this->matr[1][0] = rhs.matr[1][0];
this->matr[1][1] = rhs.matr[1][1];
return *this;
}

Matrix power(const Matrix& m, int n)
{
if (n == 1)
return m;
if (n%2 == 0)
return power(m*m, n/2);
else
return power(m*m, n/2) * m;
}

//普通递归
long fib1(int n)
{
if (n <= 2)
{
return 1;
}
else
{
return fib1(n-1) + fib1(n-2);
}
}
/*上面的效率分析代码
long fib1(int n, int* arr)
{
arr
++;
if (n <= 1)
{
return 1;
}
else
{
return fib1(n-1, arr) + fib1(n-2, arr);
}
}
*/

long fib(int n, long a, long b, int count)
{
if (count == n)
return b;
return fib(n, b, a+b, ++count);
}
//一叉递归
long fib2(int n)
{
return fib(n, 0, 1, 1);
}

//非递归方法O(n)
long fib3 (int n)
{
long x = 0, y = 1;
for (int j = 1; j < n; j++)
{
y = x + y;
x = y - x;
}
return y;
}

//矩阵乘法O(log(n))
long fib4 (int n)
{
Matrix matrix0(1, 1, 1, 0);
matrix0 = power(matrix0, n-1);
return matrix0.matr[0][0];
}

//公式法O(1)
long fib5(int n)
{
double z = sqrt(5.0);
double x = (1 + z)/2;
double y = (1 - z)/2;
return (pow(x, n) - pow(y, n))/z + 0.5;
}

int main()
{
//n = 45时候fib1()很慢
int n = 10;
cout << fib1(n) << endl;
cout << fib2(n) << endl;
cout << fib3(n) << endl;
cout << fib4(n) << endl;
cout << fib5(n) << endl;
return 0;
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: