您的位置:首页 > 运维架构 > Linux

linux gpio模拟i2c的使用/用GPIO模拟I2C总线-3

2014-08-12 17:04 405 查看
这个结构专门用于数据传输相关的addr为I2C设备地址,flags为一些标志位,len为数据的长度,buf为数据。这里宏定义的一些标志还是需要了解一下。
I2C_M_TEN表示10位设备地址
I2C_M_RD读标志
I2C_M_NOSTART无起始信号标志
I2C_M_IGNORE_NAK忽略应答信号标志
回到for,这里的num代表有几个struct i2c_msg,进入for语句,接下来是个if语句,判断这个设备是否定义了I2C_M_NOSTART标志,这个标志主要用于写操作时,不必重新发送起始信号和设备地址,但是对于读操作就不同了,要调用i2c_repstart这个函数去重新发送起始信号,调用bit_doAddress函数去重新构造设备地址字节,来看这个函数。

static int bit_doAddress(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
{
unsigned short flags = msg->flags;
unsigned short nak_ok = msg->flags & I2C_M_IGNORE_NAK;
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;

unsigned char addr;
int ret, retries;

retries = nak_ok ? 0 : i2c_adap->retries;

if (flags & I2C_M_TEN) {
/* a ten bit address */
addr = 0xf0 | ((msg->addr >> 7) & 0x03);
bit_dbg(2, &i2c_adap->dev, "addr0: %d\n", addr);
/* try extended address code...*/
ret = try_address(i2c_adap, addr, retries);
if ((ret != 1) && !nak_ok) {
dev_err(&i2c_adap->dev,
"died at extended address code\n");
return -EREMOTEIO;
}
/* the remaining 8 bit address */
ret = i2c_outb(i2c_adap, msg->addr & 0x7f);
if ((ret != 1) && !nak_ok) {
/* the chip did not ack / xmission error occurred */
dev_err(&i2c_adap->dev, "died at 2nd address code\n");
return -EREMOTEIO;
}
if (flags & I2C_M_RD) {
bit_dbg(3, &i2c_adap->dev, "emitting repeated "
"start condition\n");
i2c_repstart(adap);
/* okay, now switch into reading mode */
addr |= 0x01;
ret = try_address(i2c_adap, addr, retries);
if ((ret != 1)&n
4000
bsp;&& !nak_ok) {
dev_err(&i2c_adap->dev,
"died at repeated address code\n");
return -EREMOTEIO;
}
}
} else { /* normal 7bit address */
addr = msg->addr << 1;
if (flags & I2C_M_RD)
addr |= 1;
if (flags & I2C_M_REV_DIR_ADDR)
addr ^= 1;
ret = try_address(i2c_adap, addr, retries);
if ((ret != 1) && !nak_ok)
return -ENXIO;
}

return 0;
}

这里先做了一个判断,10位设备地址和7位设备地址分别做不同的处理,通常一条I2C总线上不会挂那么多I2C设备,所以10位地址不常用,直接看对7位地址的处理。struct
i2c_msg中addr中是真正的设备地址,而这里发送的addr高7位才是设备地址,最低位为读写位,如果为读,最低位为1,如果为写,最低位为0。所以要将struct i2c_msg中addr向左移1位,如果定义了I2C_M_RD标志,就将addr或上1,前面就说过,这个标志就代表读,如果是写,这里就不用处理,因为最低位本身就是0。最后调用try_address函数将这个地址字节发送出去。

[html] view
plaincopyprint?

1. static int try_address(struct i2c_adapter *i2c_adap,

2. unsigned char addr, int retries)

3. {

4. struct i2c_algo_bit_data *adap = i2c_adap->algo_data;

5. int i, ret = 0;

6.

7. for (i = 0; i <= retries; i++) {

8. ret = i2c_outb(i2c_adap, addr);

9. if (ret == 1 || i == retries)

10. break;

11. bit_dbg(3, &i2c_adap->dev, "emitting stop condition\n");

12. i2c_stop(adap);

13. udelay(adap->udelay);

14. yield();

15. bit_dbg(3, &i2c_adap->dev, "emitting start condition\n");

16. i2c_start(adap);

17. }

18. if (i && ret)

19. bit_dbg(1, &i2c_adap->dev, "Used %d tries to %s client at "

20. "0x%02x: %s\n", i + 1,

21. addr & 1 ? "read from" : "write to", addr >> 1,

22. ret == 1 ? "success" : "failed, timeout?");

23. return ret;

24. }

最主要的就是调用i2c_outb发送一个字节,retries为重复次数,看前面adap->retries=
3;
如果发送失败,也就是设备没有给出应答信号,那就发送停止信号,发送起始信号,再发送这个地址字节,这就叫retries。来看这个具体的i2c_outb函数

[html] view
plaincopyprint?

1. static int i2c_outb(struct i2c_adapter *i2c_adap, unsigned char c)

2. {

3. int i;

4. int sb;

5. int ack;

6. struct i2c_algo_bit_data *adap = i2c_adap->algo_data;

7.

8. /* assert: scl is low */

9. for (i = 7; i >= 0; i--) {

10. sb = (c >> i) & 1;

11. setsda(adap, sb);

12. udelay((adap->udelay + 1) / 2);

13. if (sclhi(adap) < 0) { /* timed out */

14. bit_dbg(1, &i2c_adap->dev, "i2c_outb: 0x%02x, "

15. "timeout at bit #%d\n", (int)c, i);

16. return -ETIMEDOUT;

17. }

18. /* FIXME do arbitration here:

19. * if (sb && !getsda(adap)) -> ouch! Get out of here.

20. *

21. * Report a unique code, so higher level code can retry

22. * the whole (combined) message and *NOT* issue STOP.

23. */

24. scllo(adap);

25. }

26. sdahi(adap);

27. if (sclhi(adap) < 0) { /* timeout */

28. bit_dbg(1, &i2c_adap->dev, "i2c_outb: 0x%02x, "

29. "timeout at ack\n", (int)c);

30. return -ETIMEDOUT;

31. }

32.

33. /* read ack: SDA should be pulled down by slave, or it may

34. * NAK (usually to report problems with the data we wrote).

35. */

36. ack = !getsda(adap); /* ack: sda is pulled low -> success */

37. bit_dbg(2, &i2c_adap->dev, "i2c_outb: 0x%02x %s\n", (int)c,

38. ack ? "A" : "NA");

39.

40. scllo(adap);

41. return ack;

42. /* assert: scl is low (sda undef) */

43. }

这个函数有两个参数,一个是structi2c_adapter代表I2C主机,一个是发送的字节数据。那么I2C是怎样将一个字节数据发送出去的呢,那再来看看协议。



首先是发送字节数据的最高位,在时钟为高电平期间将一位数据发送出去,最后是发送字节数据的最低位。发送完成之后,我们需要一个ACK信号,要不然我怎么知道发送成功没有,ACK信号就是在第九个时钟周期时数据线为低,所以在一个字节数据传送完成后,还要将数据线拉高,我们看程序中就是这一句sdahi(adap);等待这个ACK信号的到来,这样一个字节数据就发送完成。

回到bit_xfer函数中,前面只是将设备地址字节发送出去了,那么接下来就是该发送数据了。

注意:这里的数据包括操作设备的基地址

如果是读则调用readbytes函数去读,如果是写则调用sendbytes去写,先看readbytes函数

[html] view
plaincopyprint?

1. static int readbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)

2. {

3. int inval;

4. int rdcount = 0; /* counts bytes read */

5. unsigned char *temp = msg->buf;

6. int count = msg->len;

7. const unsigned flags = msg->flags;

8.

9. while (count > 0) {

10. inval = i2c_inb(i2c_adap);

11. if (inval >= 0) {

12. *temp = inval;

13. rdcount++;

14. } else { /* read timed out */

15. break;

16. }

17.

18. temp++;

19. count--;

20.

21. /* Some SMBus transactions require that we receive the

22. transaction length as the first read byte. */

23. if (rdcount == 1 && (flags & I2C_M_RECV_LEN)) {

24. if (inval <= 0 || inval > I2C_SMBUS_BLOCK_MAX) {

25. if (!(flags & I2C_M_NO_RD_ACK))

26. acknak(i2c_adap, 0);

27. dev_err(&i2c_adap->dev, "readbytes: invalid "

28. "block length (%d)\n", inval);

29. return -EREMOTEIO;

30. }

31. /* The original count value accounts for the extra

32. bytes, that is, either 1 for a regular transaction,

33. or 2 for a PEC transaction. */

34. count += inval;

35. msg->len += inval;

36. }

37.

38. bit_dbg(2, &i2c_adap->dev, "readbytes: 0x%02x %s\n",

39. inval,

40. (flags & I2C_M_NO_RD_ACK)

41. ? "(no ack/nak)"

42. : (count ? "A" : "NA"));

43.

44. if (!(flags & I2C_M_NO_RD_ACK)) {

45. inval = acknak(i2c_adap, count);

46. if (inval < 0)

47. return inval;

48. }

49. }

50. return rdcount;

51. }

其中一个大的while循环,调用i2c_inb去读一个字节,count为数据的长度,单位为多少个字节,
那就来看i2c_inb函数。

static int i2c_inb(struct i2c_adapter *i2c_adap)
{
/* read byte via i2c port, without start/stop sequence */
/* acknowledge is sent in i2c_read. */
int i;
unsigned char indata = 0;
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;

/* assert: scl is low */
sdahi(adap);
for (i = 0; i < 8; i++) {
if (sclhi(adap) < 0) { /* timeout */
bit_dbg(1, &i2c_adap->dev, "i2c_inb: timeout at bit "
"#%d\n", 7 - i);
return -ETIMEDOUT;
}
indata *= 2;
if (getsda(adap))
indata |= 0x01;
setscl(adap, 0);
udelay(i == 7 ? adap->udelay / 2 : adap->udelay);
}
/* assert: scl is low */
return indata;
}

再来看sendbytes函数

[html] view
plaincopyprint?

1. static int sendbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)

2. {

3. const unsigned char *temp = msg->buf;

4. int count = msg->len;

5. unsigned short nak_ok = msg->flags & I2C_M_IGNORE_NAK;

6. int retval;

7. int wrcount = 0;

8.

9. while (count > 0) {

10. retval = i2c_outb(i2c_adap, *temp);

11.

12. /* OK/ACK; or ignored NAK */

13. if ((retval > 0) || (nak_ok && (retval == 0))) {

14. count--;

15. temp++;

16. wrcount++;

17.

18. /* A slave NAKing the master means the slave didn't like

19. * something about the data it saw. For example, maybe

20. * the SMBus PEC was wrong.

21. */

22. } else if (retval == 0) {

23. dev_err(&i2c_adap->dev, "sendbytes: NAK bailout.\n");

24. return -EIO;

25.

26. /* Timeout; or (someday) lost arbitration

27. *

28. * FIXME Lost ARB implies retrying the transaction from

29. * the first message, after the "winning" master issues

30. * its STOP. As a rule, upper layer code has no reason

31. * to know or care about this ... it is *NOT* an error.

32. */

33. } else {

34. dev_err(&i2c_adap->dev, "sendbytes: error %d\n",

35. retval);

36. return retval;

37. }

38. }

39. return wrcount;

40. }

也是一个大的while循环,同发送地址字节一样,也是调用i2c_outb去发送一个字节,count也是数据长度,由于i2c_outb函数在前面发送设备地址那里已经介绍了,这里也就不贴出来了。
还是回到bit_xfer函数,数据传输完成后,调用i2c_stop函数发送停止信号。我们看停止信号函数怎么去实现的。

[html] view
plaincopyprint?

1. static void i2c_stop(struct i2c_algo_bit_data *adap)

2. {

3. /* assert: scl is low */

4. sdalo(adap);

5. sclhi(adap);

6. setsda(adap, 1);

7. udelay(adap->udelay); &n
4000
bsp;

8. }

看前面发送起始信号的那张图,停止信号就是在时钟为高电平期间,数据线从低到高的跳变。我们看程序是先将数据线拉低,将时钟线拉高,最后将数据拉高,这样就够成了一个停止信号。

还是回到i2c_bit_add_numbered_bus这个函数中来,看另外一个函数调用i2c_add_numbered_adapter。

[html] view
plaincopyprint?

1. int i2c_add_numbered_adapter(struct i2c_adapter *adap)

2. {

3. int id;

4. int status;

5.

6. if (adap->nr & ~MAX_ID_MASK)

7. return -EINVAL;

8.

9. retry:

10. if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0)

11. return -ENOMEM;

12.

13. mutex_lock(&core_lock);

14. /* "above" here means "above or equal to", sigh;

15. * we need the "equal to" result to force the result

16. */

17. status = idr_get_new_above(&i2c_adapter_idr, adap, adap->nr, &id);

18. if (status == 0 && id != adap->nr) {

19. status = -EBUSY;

20. idr_remove(&i2c_adapter_idr, id);

21. }

22. mutex_unlock(&core_lock);

23. if (status == -EAGAIN)

24. goto retry;

25.

26. if (status == 0)

27. status = i2c_register_adapter(adap);

28. return status;

29. }

最重要的是这句i2c_register_adapter,注册这条I2C总线,进去看看

static int i2c_register_adapter(struct i2c_adapter *adap)
{
int res = 0, dummy;

/* Can't register until after driver model init */
if (unlikely(WARN_ON(!i2c_bus_type.p))) {
res = -EAGAIN;
goto out_list;
}

mutex_init(&adap->bus_lock);

/* Set default timeout to 1 second if not already set */
if (adap->timeout == 0)
adap->timeout = HZ;

dev_set_name(&adap->dev, "i2c-%d", adap->nr);
adap->dev.bus = &i2c_bus_type;
adap->dev.type = &i2c_adapter_type;
res = device_register(&adap->dev);
if (res)
goto out_list;

dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);

#ifdef CONFIG_I2C_COMPAT
res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
adap->dev.parent);
if (res)
dev_warn(&adap->dev,
"Failed to create compatibility class link\n");
#endif

/* create pre-declared device nodes */
if (adap->nr < __i2c_first_dynamic_bus_num)
i2c_scan_static_board_info(adap);

/* Notify drivers */
mutex_lock(&core_lock);
dummy = bus_for_each_drv(&i2c_bus_type, NULL, adap,
i2c_do_add_adapter);
mutex_unlock(&core_lock);

return 0;

out_list:
mutex_lock(&core_lock);
idr_remove(&i2c_adapter_idr, adap->nr);
mutex_unlock(&core_lock);
return res;
}

看内核代码有时就会这样,会陷入内核代码的汪洋大海中,而拔不出来,直接后果是最后都忘记看这段代码的目的,丧失继续看下去的信心。所以为了避免这样情况出现,所以最好在开始看代码的时候要明确目标,我通过这段代码到底要了解什么东西,主干要抓住,其它枝叶就不要看了。
在这里我认为主要的有
1.注册这个I2C总线设备

[html] view
plaincopyprint?

1. adap->dev.bus = &i2c_bus_type;

2. adap->dev.type = &i2c_adapter_type;

3. res = device_register(&adap->dev);

这个设备的总线类型为i2c_bus_type

[html] view
plaincopyprint?

1. struct bus_type i2c_bus_type = {

2. .name = "i2c",

3. .match = i2c_device_match,

4. .probe = i2c_device_probe,

5. .remove = i2c_device_remove,

6. .shutdown = i2c_device_shutdown,

7. .suspend = i2c_device_suspend,

8. .resume = i2c_device_resume,

9. };

看一下它的match函数

[html] view
plaincopyprint?

1. static int i2c_device_match(struct device *dev, struct device_driver *drv)

2. {

3. struct i2c_client *client = i2c_verify_client(dev);

4. struct i2c_driver *driver;

5.

6. if (!client)

7. return 0;

8.

9. driver = to_i2c_driver(drv);

10. /* match on an id table if there is one */

11. if (driver->id_table)

12. return i2c_match_id(driver->id_table, client) != NULL;

13.

14. return 0;

15. }

这个match函数主要用来匹配我们的I2C设备和I2C驱动的,如果匹配成功,最后会调用驱动的probe函数,来看它如何匹配的。

[html] view
plaincopyprint?

1. static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,

2. const struct i2c_client *client)

3. {

4. while (id->name[0]) {

5. if (strcmp(client->name, id->name) == 0)

6. return id;

7. id++;

8. }

9. return NULL;

0. }

就是判断I2C设备的name字段和驱动中id_table中定义的name字段是否相等。

2.往这条总线上添加设备

[html] view
plaincopyprint?

1. static void i2c_scan_static_board_info(struct i2c_adapter *adapter)

2. {

3. struct i2c_devinfo *devinfo;

4.

5. down_read(&__i2c_board_lock);

6. list_for_each_entry(devinfo, &__i2c_board_list, list) {

7. if (devinfo->busnum == adapter->nr

8. && !i2c_new_device(adapter,

9. &devinfo->board_info))

10. dev_err(&adapter->dev,

11. "Can't create device at 0x%02x\n",

12. devinfo->board_info.addr);

13. }

14. up_read(&__i2c_board_lock);

15. }

遍历__i2c_board_list这条链表,看下面的if语句,首先要让struct i2c_devinfo结构中的busnum等于struct i2c_adapter中的nr,我们前面也说了,这个nr就是i2c总线的总线号,这里可以理解为是在往这条总线上添加设备。所以,如果我们要向I2C注册一个I2C设备的话,直接向__i2c_board_list添加一个设备信息就可以了,先来看这个设备信息结构是怎么定义的。

[html] view
plaincopyprint?

1. struct i2c_board_info {

2. char type[I2C_NAME_SIZE];

3. unsigned short flags;

4. unsigned short addr;

5. void *platform_data;

6. struct dev_archdata *archdata;

7. int irq;

8. };

定义这样一个信息呢一般使用一个宏I2C_BOARD_INFO

[html] view
plaincopyprint?

# #define I2C_BOARD_INFO(dev_type, dev_addr) \

# .type = dev_type, .addr = (dev_addr)

[html] view
plaincopyprint?

dev_type为设备的名字,前面也说了,这个name一定要和I2C驱动相同。addr为设备的地址。

定义了这样一组信息之后呢,接下来当然是往链表添加这些信息了。

[html] view
plaincopyprint?

1. int __init

2. i2c_register_board_info(int busnum,

3. struct i2c_board_info const *info, unsigned len)

4. {

5. int status;

6.

7. down_write(&__i2c_board_lock);

8.

9. /* dynamic bus numbers will be assigned after the last static one */

10. if (busnum >= __i2c_first_dynamic_bus_num)

11. __i2c_first_dynamic_bus_num = busnum + 1;

12.

13. for (status = 0; len; len--, info++) {

14. struct i2c_devinfo *devinfo;

15.

16. devinfo = kzalloc(sizeof(*devinfo), GFP_KERNEL);

17. if (!devinfo) {

18. pr_debug("i2c-core: can't register boardinfo!\n");

19. status = -ENOMEM;

20. break;

21. }

22.

23. devinfo->busnum = busnum;

24. devinfo->board_info = *info;

25. list_add_tail(&devinfo->list, &__i2c_board_list);

26. }

27.

28. up_write(&__i2c_board_lock);

29.

30. return status;

31. }

第一个参数呢需要注意,它是I2C总线号,一定要和具体的I2C总线对应。我们看又定义了这样一个结构struct i2c_devinfo。

最后是调用list_add_tail往__i2c_board_list这条链表添加设备信息。
然后是i2c_new_device

[html] view
plaincopyprint?

# struct i2c_client *

# i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)

# {

# struct i2c_client *client;

# int status;

#

# /*为I2C设备申请内存*/

# client = kzalloc(sizeof *client, GFP_KERNEL);

# if (!client)

# return NULL;

#

# /*指定I2C设备的总线*/

# client->adapter = adap;

#

# client->dev.platform_data = info->platform_data;

#

# if (info->archdata)

# client->dev.archdata = *info->archdata;

#

# client->flags = info->flags;

# client->addr = info->addr; /*I2C设备地址*/

# client->irq = info->irq;

#

# strlcpy(client->name, info->type, sizeof(client->name));

#

# /*检查这个地址有没有被设备占用*/

# /* Check for address business */

# status = i2c_check_addr(adap, client->addr);

# if (status)

# goto out_err;

#

# client->dev.parent = &client->adapter->dev; /*指定设备的父设备*/

# client->dev.bus = &i2c_bus_type; /*指定设备的总线类型*/

# client->dev.type = &i2c_client_type;

#

# dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),

# client->addr);

# status = device_register(&client->dev); /*注册设备*/

# if (status)

# goto out_err;

#

# dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",

# client->name, dev_name(&client->dev));

#

# return client;

#

# out_err:

# dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "

# "(%d)\n", client->name, client->addr, status);

# kfree(client);

# return NULL;

这个函数的功能是新建一个I2C设备并注册它,在I2C子系统中,I2C设备使用结构structi2c_client描述,那么首先要申请内存空间,I2C设备的主机是谁,必须知道挂载到哪条总线上的,然后就是一些赋值操作,最后就是注册设备,那么这个设备就实实在在的挂在到这条总线上了,这也是新的I2C设备注册方式。

3.i2c_do_add_adapter

你看说着说着就跑远了

[html] view
plaincopyprint?

1. static int i2c_do_add_adapter(struct device_driver *d, void *data)

2. {

3. struct i2c_driver *driver = to_i2c_driver(d);

4. struct i2c_adapter *adap = data;

5.

6. /* Detect supported devices on that bus, and instantiate them */

7. i2c_detect(adap, driver);

8.

9. /* Let legacy drivers scan this bus for matching devices */

10. if (driver->attach_adapter) {

11. /* We ignore the return code; if it fails, too bad */

12. driver->attach_adapter(adap);

13. }

14. return 0;

15. }

前面通过i2c_scan_static_board_info往I2C总线上添加设备是新的方式,而这里调用每个I2C设备驱动的attach_adapter函数,然后在attach_adapter函数中去实现设备的注册,这是老的方式,i2c-dev.c中就是采用的这种方式。至此,总线这块就看完了。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: