您的位置:首页 > 其它

了解集合本质必须要知晓的概念04-二叉查找树

2014-08-07 16:11 267 查看
与链表、堆栈和队列不一样,二叉查找树不是线性数据结构,是二维数据结构。每个节点都包含一个LeftNode和RightNode,二叉查找树把比节点数据项小的数据放在LeftNode,把比节点数据项大的数据放在RightNode。

关于节点的类。

public class TreeNode<T>
{
public T Element { get; set; }
public TreeNode<T>  LeftNode { get; set; }
public TreeNode<T>  RightNode { get; set; }
public TreeNode(T element)
    {
this.Element = element;
LeftNode = RightNode = null;
}
public override string ToString()
    {
string nodeString = "[" + this.Element + " ";
if (this.LeftNode == null && this.RightNode == null)
        {
nodeString += " (叶节点) ";
    }
if (this.LeftNode != null)
        {
nodeString += "左节点:" + this.LeftNode.ToString();
    }
if (this.RightNode != null)
        {
nodeString += "右节点:" + this.RightNode.ToString();
    }
nodeString += "]";
return nodeString;
}
}

以上,把比节点数据项Element小的数据所在节点赋值给LeftNode,把比节点数据项Element大的数据所在节点赋值给RightNode。

创建一个泛型二叉树查找类,维护着一个根节点,并提供各种对节点的操作方法。

public class BinarySearchTree<T>
{
public TreeNode<T> Root { get; set; }
public BinarySearchTree()
    {
this.Root = null;
}
//把某个数据项插入到二叉树
public void Insert(T x)
    {
this.Root = Insert(x, this.Root);
}
//把某个数据项从二叉树中删除
public void Remove(T x)
    {
this.Root = Remove(x, this.Root);
}
//删除二叉树中的最小数据项
public void RemoveMin()
    {
this.Root = RemoveMin(this.Root);
}
//获取二叉树中的最小数据项
public T FindMin()
    {
return ElemntAt(FindMin(this.Root));
}
//获取二叉树中的最大数据项
public T FindMax()
    {
return ElemntAt(FindMax(this.Root));
}
//获取二叉树中的某个数据项
public T Find(T x)
    {
return ElemntAt(Find(x, this.Root));
}
//清空
public void MakeEmpty()
    {
this.Root = null;
}
//判断二叉树是否为空,是否存在
public bool IsEmpty()
    {
return this.Root == null;
}
//获取某个节点的数据项
private T ElemntAt(TreeNode<T> t)
    {
return t == null ? default(T) : t.Element;
}
/// <summary>
/// 查找节点
/// </summary>
/// <param name="x">要查找数据项</param>
/// <param name="t">已存在的节点</param>
/// <returns>返回节点</returns>
private TreeNode<T> Find(T x, TreeNode<T> t)
    {
while (t != null)//当没有找到匹配数据项,不断调整查找范围,即t的值
        {
if ((x as IComparable).CompareTo(t.Element) < 0)
            {
t = t.LeftNode;
        }
else if ((x as IComparable).CompareTo(t.Element) > 0)
            {
t = t.RightNode;
        }
else //如果找到数据项,就返回当前t的值
            {
return t;
        }
    }
return null;
}
//获取最小的节点,
private TreeNode<T> FindMin(TreeNode<T> t)
    {
if (t != null)
        {
while (t.LeftNode != null)//不断循环二叉树的左半边树
            {
t = t.LeftNode; //不断设置t的值
        }
    }
return t;
}
//获取最大的节点
private TreeNode<T> FindMax(TreeNode<T> t)
    {
if (t != null)
        {
while (t.RightNode != null)
            {
t = t.RightNode;
        }
    }
return t;
}
/// <summary>
/// 插入节点
/// </summary>
/// <param name="x">要插入的数据项</param>
/// <param name="t">已经存在的节点</param>
/// <returns>返回已存在的节点</returns>
protected TreeNode<T> Insert(T x, TreeNode<T> t)
    {
if (t == null)
        {
t = new TreeNode<T>(x);
    }
else if ((x as IComparable).CompareTo(t.Element) < 0)
        {
//等号右边的t.LeftNode是null,因此会创建一个TreeNode实例给t.LeftNode
t.LeftNode = Insert(x, t.LeftNode);
    }
else if ((x as IComparable).CompareTo(t.Element) > 0)
        {
t.RightNode = Insert(x, t.RightNode);
    }
else
        {
throw new Exception("插入了相同元素~~");
    }
return t;
}
//删除最小的节点
//返回当前根节点
protected TreeNode<T> RemoveMin(TreeNode<T> t)
    {
if (t == null)
        {
throw new Exception("节点不存在~~");
    }
else if (t.LeftNode != null)
        {
//通过递归不断设置t.LeftNode,直到t.LeftNode=null
t.LeftNode = RemoveMin(t.LeftNode);
    return t;
    }
else //当t.LeftNode=null的时候,就把t.RightNode当作最小节点返回
        {
return t.RightNode;
    }
}
//删除某数据项,返回当前根节点
protected TreeNode<T> Remove(T x, TreeNode<T> t)
    {
if (t == null)
        {
throw new Exception("节点不存在~~");
    }
else if((x as IComparable).CompareTo(t.Element) < 0)
        {
t.LeftNode = Remove(x, t.LeftNode);
    }
else if ((x as IComparable).CompareTo(t.Element) > 0)
        {
t.RightNode = Remove(x, t.RightNode);
    }
else if (t.LeftNode != null && t.RightNode != null)
        {
t.Element = FindMin(t.RightNode).Element;
t.RightNode = RemoveMin(t.RightNode);
    }
else
        {
t = (t.LeftNode != null) ? t.LeftNode : t.RightNode;
    }
return t;
}
public override string ToString()
    {
return this.Root.ToString();
}
}

客户端创建二叉查找树的实例,并调用实例方法插入随机数据。
BinarySearchTree<int> intTree = new BinarySearchTree<int>();
Random r = new Random(DateTime.Now.Millisecond);
string trace = "";
//插入5个随机数
for (int i = 0; i < 5; i++)
        {
int randomInt = r.Next(1, 500);
intTree.Insert(randomInt);
trace += randomInt + " ";
    }
Console.WriteLine("最大的节点:" + intTree.FindMax());
Console.WriteLine("最小的节点:" + intTree.FindMin());
Console.WriteLine("根节点:" + intTree.Root.Element);
Console.WriteLine("插入节点的依次顺序是:" + trace);
Console.WriteLine("打印树为:" + intTree);
Console.ReadKey();





参考资料:
Binary Search Trees (BSTs) in C#

“了解集合本质必须要知晓的概念”系列包括:

了解集合本质必须要知晓的概念01-链表

了解集合本质必须要知晓的概念02-堆栈

了解集合本质必须要知晓的概念03-队列

了解集合本质必须要知晓的概念04-二叉查找树

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: