您的位置:首页 > 其它

见过的最清晰的讲解最大流思路的文章

2014-02-26 11:22 183 查看
原创路径:http://www.wutianqi.com/?p=3107

Edmond Karp算法的大概思想:
反复寻找源点s到汇点t之间的增广路径,若有,找出增广路径上每一段[容量-流量]的最小值delta,若无,则结束。

在寻找增广路径时,可以用BFS来找,并且更新残留网络的值(涉及到反向边)。

而找到delta后,则使最大流值加上delta,更新为当前的最大流值。

(粗体表明需要掌握的概念)

关于反向边:
以下摘至HDOJ的课件和网上的:

首先来看一下基本的网络流最大流模型。

有n个点,有m条有向边,有一个点很特殊,只出不进,叫做源点,通常规定为1号点。另一个点也很特殊,只进不出,叫做汇点,通常规定为n号点。每条有向边上有两个量,容量和流量,从i到j的容量通常用c[I,j]表示,流量则通常是f[I,j]。通常可以把这些边想象成道路,流量就是这条道路的车流量,容量就是道路可承受的最大的车流量。很显然的,流量<=容量。而对于每个不是源点和汇点的点来说,可以类比的想象成没有存储功能的货物的中转站,所有”进入”他们的流量和等于所有从他本身”出去”的流量。

把源点比作工厂的话,问题就是求从工厂最大可以发出多少货物,是不至于超过道路的容量限制,也就是,最大流。

比如这个图。每条边旁边的数字表示它的容量。





下面我们来考虑如何求最大流。

首先,假如所有边上的流量都没有超过容量(不大于容量),那么就把这一组流量,或者说,这个流,称为一个可行流。一个最简单的例子就是,零流,即所有的流量都是0的流。

我们就从这个零流开始考虑,假如有这么一条路,这条路从源点开始一直一段一段的连到了汇点,并且,这条路上的每一段都满足流量<容量,注意,是严格的<,而不是<=。那么,我们一定能找到这条路上的每一段的(容量-流量)的值当中的最小值 delta。我们把这条路上每一段的流量都加上这个delta,一定可以保证这个流依然是可行流,这是显然的。

这样我们就得到了一个更大的流,他的流量是之前的流量+delta,而这条路就叫做增广路。

我们不断地从起点开始寻找增广路,每次都对其进行增广,直到源点和汇点不连通,也就是找不到增广路为止。当找不到增广路的时候,当前的流量就是最大流,这个结论非常重要。

寻找增广路的时候我们可以简单的从源点开始做bfs,并不断修改这条路上的delta量,直到找到源点或者找不到增广路。

这里要先补充一点,在程序实现的时候,我们通常只是用一个c数组来记录容量,而不记录流量,当流量+1的时候,我们可以通过容量-1来实现,以方便程序的实现。

先来看看BFS部分的代码(C/C++实现):

查看源代码

打印帮助

1
// 用BFS来判断从结点s到t的路径上是否还有delta
2
// 即判断s,t之间是否还有增广路径,若有,返回1
3
bool
BFS(
int
s,

int
t)
4
{
5
queue<
int
> que;
6
memset
(pre,-1,
sizeof
(pre));
7
memset
(vis,
false
,

sizeof
(vis));
8
9
pre[s] = s;
10
vis[s] =
true
;
11
que.push(s);
12
13
int

p;
14
while
(!que.empty())
15
{
16
p = que.front();
17
que.pop();
18
for
(
int

i=1; i<=M; ++i)
19
{
20
if
(r[p][i]>0 && !vis[i])
21
{
22
pre[i] = p;
23
vis[i] =
true
;
24
if
(i == t)
// 存在增广路径
25
return

true
;
26
que.push(i);
27
}
28
}
29
}
30
return

false
;
31
}
但事实上并没有这么简单,上面所说的增广路还不完整,比如说下面这个网络流模型。





我们第一次找到了1-2-3-4这条增广路,这条路上的delta值显然是1。于是我们修改后得到了下面这个流。(图中的数字是容量)





这时候(1,2)和(3,4)边上的流量都等于容量了,我们再也找不到其他的增广路了,当前的流量是1。

但这个答案明显不是最大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流。

那么我们刚刚的算法问题在哪里呢?问题就在于我们没有给程序一个”后悔”的机会,应该有一个不走(2-3-4)而改走(2-4)的机制。那么如何解决这个问题呢?回溯搜索吗?那么我们的效率就上升到指数级了。

而这个算法神奇的利用了一个叫做反向边的概念来解决这个问题。即每条边(I,j)都有一条反向边(j,i),反向边也同样有它的容量。

我们直接来看它是如何解决的:

在第一次找到增广路之后,在把路上每一段的容量减少delta的同时,也把每一段上的反方向的容量增加delta。即在Dec(c[x,y],delta)的同时,inc(c[y,x],delta)

我们来看刚才的例子,在找到1-2-3-4这条增广路之后,把容量修改成如下





这时再找增广路的时候,就会找到1-3-2-4这条可增广量,即delta值为1的可增广路。将这条路增广之后,得到了最大流2。





那么,这么做为什么会是对的呢?我来通俗的解释一下吧。

事实上,当我们第二次的增广路走3-2这条反向边的时候,就相当于把2-3这条正向边已经是用了的流量给”退”了回去,不走2-3这条路,而改走从2点出发的其他的路也就是2-4。(有人问如果这里没有2-4怎么办,这时假如没有2-4这条路的话,最终这条增广路也不会存在,因为他根本不能走到汇点)同时本来在3-4上的流量由1-3-4这条路来”接管”。而最终2-3这条路正向流量1,反向流量1,等于没有流量。

这就是这个算法的精华部分,利用反向边,使程序有了一个后悔和改正的机会。而这个算法和我刚才给出的代码相比只多了一句话而已。

至此,最大流Edmond-Karp算法介绍完毕。

Edmond Karp算法具体实现(C/C++):

查看源代码

打印帮助

1
/**
2
* Edmond Karp
3
* Max Flow
4
* by Tanky Woo @ www.wutianqi.com
5
*/
6
7
#include <iostream>
8
#include <queue>
9
#include <algorithm>
10
using
namespace
std;
11
const
int
msize = 205;
12
13
int

N,M;
// N--路径数,M--结点数
14
int
r[msize][msize];
//
15
int
pre[msize];
// 记录结点i的前向结点为pre[i]
16
bool
vis[msize];
// 记录结点i是否已访问
17
18
// 用BFS来判断从结点s到t的路径上是否还有delta
19
// 即判断s,t之间是否还有增广路径,若有,返回1
20
bool
BFS(
int
s,

int
t)
21
{
22
queue<
int
> que;
23
memset
(pre,-1,
sizeof
(pre));
24
memset
(vis,
false
,

sizeof
(vis));
25
26
pre[s] = s;
27
vis[s] =
true
;
28
que.push(s);
29
30
int

p;
31
while
(!que.empty())
32
{
33
p = que.front();
34
que.pop();
35
for
(
int

i=1; i<=M; ++i)
36
{
37
if
(r[p][i]>0 && !vis[i])
38
{
39
pre[i] = p;
40
vis[i] =
true
;
41
if
(i == t)
// 存在增广路径
42
return

true
;
43
que.push(i);
44
}
45
}
46
}
47
return

false
;
48
}
49
50
int
EK(
int
s,

int
t)
51
{
52
int

maxflow = 0,d;
53
while
(BFS(s,t))
54
{
55
d= INT_MAX;
56
// 若有增广路径,则找出最小的delta
57
for
(
int

i=t; i!=s; i=pre[i])
58
d = min(d,r[pre[i]][i]);
59
// 这里是反向边,看讲解
60
for
(
int

i=t; i!=s; i=pre[i])
61
{
62
r[pre[i]][i] -= d;
63
r[i][pre[i]] += d;
64
}
65
maxflow += d;
66
}
67
return

maxflow;
68
}
69
70
int
main()
71
{
72
while
(cin >> N >> M)
73
{
74
memset
(r,0,
sizeof
(r));
75
int

s,e,c;
76
for
(
int

i=0; i<N; ++i)
77
{
78
cin >> s >> e >> c;
79
r[s][e] += c;
// 有重边时则加上c
80
}
81
82
cout << EK(1,M) << endl;
83
}
84
return

0;
85
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: