您的位置:首页 > 其它

[转]epoll的内核实现

2013-11-22 09:09 309 查看



2013-5-27阅读309 评论0

epoll是由一组系统调用组成。

int epoll_create(int size);

int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

int epoll_wait(int epfd, struct epoll_event *events,int maxevents, int timeout);

select/poll的缺点在于:

1.每次调用时要重复地从用户态读入参数。

2.每次调用时要重复地扫描文件描述符。

3.每次在调用开始时,要把当前进程放入各个文件描述符的等待队列。在调用结束后,又把进程从各个等待队列中删除。

在实际应用中,select/poll监视的文件描述符可能会非常多,如果每次只是返回一小部分,那么,这种情况下select/poll

显得不够高效。epoll的设计思路,是把select/poll单个的操作拆分为1个epoll_create+多个epoll_ctrl+一个epoll_wait。

epoll机制实现了自己特有的文件系统eventpoll
filesystem

[cpp] view
plaincopy

/* File callbacks that implement the eventpoll file behaviour */

static const struct file_operations eventpoll_fops = {

.release = ep_eventpoll_release,

.poll = ep_eventpoll_poll

};

epoll_create创建一个属于该文件系统的文件,然后返回其文件描述符。

struct
eventpoll 保存了epoll文件节点的扩展信息,该结构保存于file结构体的private_data域中,每个epoll_create创建的epoll

描述符都分配一个该结构体。该结构的各个成员的定义如下,注释也很详细。

[cpp] view
plaincopy

/*

* This structure is stored inside the "private_data" member of the file

* structure and rapresent the main data sructure for the eventpoll

* interface.

*/

struct eventpoll {

/* Protect the this structure access,可用于中断上下文 */

spinlock_t lock;

/*

* This mutex is used to ensure that files are not removed

* while epoll is using them. This is held during the event

* collection loop, the file cleanup path, the epoll file exit

* code and the ctl operations.用户进程上下文中

*/

struct mutex mtx;

/* Wait queue used by sys_epoll_wait() */

wait_queue_head_t wq;

/* Wait queue used by file->poll() */

wait_queue_head_t poll_wait;

/* List of ready file descriptors */

struct list_head rdllist;

/* RB tree root used to store monitored fd structs */

struct rb_root rbr;

/*

* This is a single linked list that chains all the "struct epitem" that

* happened while transfering ready events to userspace w/out

* holding ->lock.

*/

struct epitem *ovflist;

/* The user that created the eventpoll descriptor */

struct user_struct *user;

};

而通过epoll_ctl接口加入该epoll描述符监听的套接字则属于socket
filesystem,这点一定要注意。每个添加的待监听(这里监听

和listen调用不同)都对应于一个epitem结构体,该结构体已红黑树的结构组织,eventpoll结构中保存了树的根节点(rbr成员)。

同时有监听事件到来的套接字的该结构以双向链表组织起来,链表头也保存在eventpoll中(rdllist成员)。

[c-sharp] view
plaincopy

/*

* Each file descriptor added to the eventpoll interface will

* have an entry of this type linked to the "rbr" RB tree.

*/

struct epitem {

/* RB tree node used to link this structure to the eventpoll RB tree */

struct rb_node rbn;

/* List header used to link this structure to the eventpoll ready list */

struct list_head rdllink;

/*

* Works together "struct eventpoll"->ovflist in keeping the

* single linked chain of items.

*/

struct epitem *next;

/* The file descriptor information this item refers to */

struct epoll_filefd ffd;

/* Number of active wait queue attached to poll operations */

int nwait;

/* List containing poll wait queues */

struct list_head pwqlist;

/* The "container" of this item */

struct eventpoll *ep;

/* List header used to link this item to the "struct file" items list */

struct list_head fllink;

/* The structure that describe the interested events and the source fd */

struct epoll_event event;

};

epoll_create的调用很简单,就是创建一个epollevent的文件,并返回文件描述符。

epoll_ctl用来添加,删除以及修改监听项。

[c-sharp] view
plaincopy

/*

* The following function implements the controller interface for

* the eventpoll file that enables the insertion/removal/change of

* file descriptors inside the interest set.

*/

SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,

struct epoll_event __user *, event)

{

int error;

struct file *file, *tfile;

struct eventpoll *ep;

struct epitem *epi;

struct epoll_event epds;

DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)/n",

current, epfd, op, fd, event));

error = -EFAULT;

if (ep_op_has_event(op) &&

copy_from_user(&epds, event, sizeof(struct epoll_event)))

goto error_return;

/* Get the "struct file *" for the eventpoll file */

error = -EBADF;

file = fget(epfd);

if (!file)

goto error_return;

/* Get the "struct file *" for the target file */

tfile = fget(fd);

if (!tfile)

goto error_fput;

/* The target file descriptor must support poll */

error = -EPERM;

if (!tfile->f_op || !tfile->f_op->poll)

goto error_tgt_fput;

/*

* We have to check that the file structure underneath the file descriptor

* the user passed to us _is_ an eventpoll file. And also we do not permit

* adding an epoll file descriptor inside itself.

*/

error = -EINVAL;

if (file == tfile || !is_file_epoll(file))

goto error_tgt_fput;

/*

* At this point it is safe to assume that the "private_data" contains

* our own data structure.

*/

ep = file->private_data;

mutex_lock(&ep->mtx);

/*

* Try to lookup the file inside our RB tree, Since we grabbed "mtx"

* above, we can be sure to be able to use the item looked up by

* ep_find() till we release the mutex.

*/

epi = ep_find(ep, tfile, fd);

error = -EINVAL;

switch (op) {

case EPOLL_CTL_ADD:

if (!epi) {

epds.events |= POLLERR | POLLHUP;

error = ep_insert(ep, &epds, tfile, fd);

} else

error = -EEXIST;

break;

case EPOLL_CTL_DEL:

if (epi)

error = ep_remove(ep, epi);

else

error = -ENOENT;

break;

case EPOLL_CTL_MOD:

if (epi) {

epds.events |= POLLERR | POLLHUP;

error = ep_modify(ep, epi, &epds);

} else

error = -ENOENT;

break;

}

mutex_unlock(&ep->mtx);

error_tgt_fput:

fput(tfile);

error_fput:

fput(file);

error_return:

DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d/n",

current, epfd, op, fd, event, error));

return error;

}

同样,代码很清楚。先来看看添加流程

[c-sharp] view
plaincopy

/*

* Must be called with "mtx" held.

*/

static int ep_insert(struct eventpoll *ep, struct epoll_event *event,

struct file *tfile, int fd)

{

int error, revents, pwake = 0;

unsigned long flags;

struct epitem *epi;

struct ep_pqueue epq;

/* 不允许超过最大监听个数*/

if (unlikely(atomic_read(&ep->user->epoll_watches) >=

max_user_watches))

return -ENOSPC;

if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))

return -ENOMEM;

/* Item initialization follow here ... */

INIT_LIST_HEAD(&epi->rdllink);

INIT_LIST_HEAD(&epi->fllink);

INIT_LIST_HEAD(&epi->pwqlist);

epi->ep = ep;

ep_set_ffd(&epi->ffd, tfile, fd);

epi->event = *event;

epi->nwait = 0;

epi->next = EP_UNACTIVE_PTR;

/* Initialize the poll table using the queue callback */

epq.epi = epi;

init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);

/*

* Attach the item to the poll hooks and get current event bits.

* We can safely use the file* here because its usage count has

* been increased by the caller of this function. Note that after

* this operation completes, the poll callback can start hitting

* the new item.

*/

revents = tfile->f_op->poll(tfile, &epq.pt);

/*

* We have to check if something went wrong during the poll wait queue

* install process. Namely an allocation for a wait queue failed due

* high memory pressure.

*/

error = -ENOMEM;

if (epi->nwait < 0)

goto error_unregister;

/* Add the current item to the list of active epoll hook for this file */

spin_lock(&tfile->f_ep_lock);

list_add_tail(&epi->fllink, &tfile->f_ep_links);

spin_unlock(&tfile->f_ep_lock);

/*

* Add the current item to the RB tree. All RB tree operations are

* protected by "mtx", and ep_insert() is called with "mtx" held.

*/

ep_rbtree_insert(ep, epi);

/* We have to drop the new item inside our item list to keep track of it */

spin_lock_irqsave(&ep->lock, flags);

/* If the file is already "ready" we drop it inside the ready list */

if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {

list_add_tail(&epi->rdllink, &ep->rdllist);

/* Notify waiting tasks that events are available */

if (waitqueue_active(&ep->wq))

wake_up_locked(&ep->wq);

if (waitqueue_active(&ep->poll_wait))

pwake++;

}

spin_unlock_irqrestore(&ep->lock, flags);

atomic_inc(&ep->user->epoll_watches);

/* We have to call this outside the lock */

if (pwake)

ep_poll_safewake(&psw, &ep->poll_wait);

DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)/n",

current, ep, tfile, fd));

return 0;

error_unregister:

ep_unregister_pollwait(ep, epi);

/*

* We need to do this because an event could have been arrived on some

* allocated wait queue. Note that we don't care about the ep->ovflist

* list, since that is used/cleaned only inside a section bound by "mtx".

* And ep_insert() is called with "mtx" held.

*/

spin_lock_irqsave(&ep->lock, flags);

if (ep_is_linked(&epi->rdllink))

list_del_init(&epi->rdllink);

spin_unlock_irqrestore(&ep->lock, flags);

kmem_cache_free(epi_cache, epi);

return error;

}

init_poll_funcptr函数注册poll
table回调函数。然后程序的下一步是调用tfile的poll函数,并且poll函数的第2个参数为poll table,

这是epoll机制中唯一对监听套接字调用poll时第2个参数不为NULL的时机。ep_ptable_queue_proc函数的作用是注册等待函数

并添加到指定的等待队列,所以在第一次调用后,该信息已经存在了,无需在poll函数中再次调用了。

[c-sharp] view
plaincopy

/*

* This is the callback that is used to add our wait queue to the

* target file wakeup lists.

*/

static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,

poll_table *pt)

{

struct epitem *epi = ep_item_from_epqueue(pt);

struct eppoll_entry *pwq;

if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {

/* 为监听套接字注册一个等待回调函数,在唤醒时调用*/

init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);

pwq->whead = whead;

pwq->base = epi;

add_wait_queue(whead, &pwq->wait);

list_add_tail(&pwq->llink, &epi->pwqlist);

epi->nwait++;

} else {

/* We have to signal that an error occurred */

epi->nwait = -1;

}

}

那么该poll函数到底是怎样的呢,这就要看我们在传入到epoll_ctl前创建的套接字的类型(socket调用)。对于创建的tcp套接字

来说,可以按照创建流程找到其对应得函数是tcp_poll。

tcp_poll的主要功能为:

如果poll
table回调函数存在(ep_ptable_queue_proc),则调用它来等待。注意这只限第一次调用,在后面的poll中都无需此步
判断事件的到达。(根据tcp的相关成员)

tcp_poll注册到的等待队列是sock成员的sk_sleep,等待队列在对应的IO事件中被唤醒。当等待队列被唤醒时会调用相应的等待回调函数

,前面看到我们注册的是函数ep_poll_callback。该函数可能在中断上下文中调用。

[c-sharp] view
plaincopy

/*

* This is the callback that is passed to the wait queue wakeup

* machanism. It is called by the stored file descriptors when they

* have events to report.

*/

static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)

{

int pwake = 0;

unsigned long flags;

struct epitem *epi = ep_item_from_wait(wait);

struct eventpoll *ep = epi->ep;

DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p/n",

current, epi->ffd.file, epi, ep));

/* 对eventpoll的spinlock加锁,因为是在中断上下文中*/

spin_lock_irqsave(&ep->lock, flags);

/* 没有事件到来

* If the event mask does not contain any poll(2) event, we consider the

* descriptor to be disabled. This condition is likely the effect of the

* EPOLLONESHOT bit that disables the descriptor when an event is received,

* until the next EPOLL_CTL_MOD will be issued.

*/

if (!(epi->event.events & ~EP_PRIVATE_BITS))

goto out_unlock;

/*

* If we are trasfering events to userspace, we can hold no locks

* (because we're accessing user memory, and because of linux f_op->poll()

* semantics). All the events that happens during that period of time are

* chained in ep->ovflist and requeued later on.

*/

if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {

if (epi->next == EP_UNACTIVE_PTR) {

epi->next = ep->ovflist;

ep->ovflist = epi;

}

goto out_unlock;

}

/* If this file is already in the ready list we exit soon */

if (ep_is_linked(&epi->rdllink))

goto is_linked;

/* 加入ready queue*/

list_add_tail(&epi->rdllink, &ep->rdllist);

is_linked:

/*

* Wake up ( if active ) both the eventpoll wait list and the ->poll()

* wait list.

*/

if (waitqueue_active(&ep->wq))

wake_up_locked(&ep->wq);

if (waitqueue_active(&ep->poll_wait))

pwake++;

out_unlock:

spin_unlock_irqrestore(&ep->lock, flags);

/* We have to call this outside the lock */

if (pwake)

ep_poll_safewake(&psw, &ep->poll_wait);

return 1;

}

注意这里有2中队列,一种是在epoll_wait调用中使用的eventpoll的等待队列,用于判断是否有监听套接字可用,一种是对应于每个套接字

的等待队列sk_sleep,用于判断每个监听套接字上事件,该队列唤醒后调用ep_poll_callback,在该函数中又调用wakeup函数来唤醒前一种

队列,来通知epoll_wait调用进程。

[cpp] view
plaincopy

static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,

int maxevents, long timeout)

{

int res, eavail;

unsigned long flags;

long jtimeout;

wait_queue_t wait;

/*

* Calculate the timeout by checking for the "infinite" value ( -1 )

* and the overflow condition. The passed timeout is in milliseconds,

* that why (t * HZ) / 1000.

*/

jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?

MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;

retry:

spin_lock_irqsave(&ep->lock, flags);

res = 0;

if (list_empty(&ep->rdllist)) {

/*

* We don't have any available event to return to the caller.

* We need to sleep here, and we will be wake up by

* ep_poll_callback() when events will become available.

*/

init_waitqueue_entry(&wait, current);

wait.flags |= WQ_FLAG_EXCLUSIVE;

__add_wait_queue(&ep->wq, &wait);

for (;;) {

/*

* We don't want to sleep if the ep_poll_callback() sends us

* a wakeup in between. That's why we set the task state

* to TASK_INTERRUPTIBLE before doing the checks.

*/

set_current_state(TASK_INTERRUPTIBLE);

if (!list_empty(&ep->rdllist) || !jtimeout)

break;

if (signal_pending(current)) {

res = -EINTR;

break;

}

spin_unlock_irqrestore(&ep->lock, flags);

jtimeout = schedule_timeout(jtimeout);

spin_lock_irqsave(&ep->lock, flags);

}

__remove_wait_queue(&ep->wq, &wait);

set_current_state(TASK_RUNNING);

}

/* Is it worth to try to dig for events ? */

eavail = !list_empty(&ep->rdllist);

spin_unlock_irqrestore(&ep->lock, flags);

/*

* Try to transfer events to user space. In case we get 0 events and

* there's still timeout left over, we go trying again in search of

* more luck.

*/

if (!res && eavail &&

!(res = ep_send_events(ep, events, maxevents)) && jtimeout)

goto retry;

return res;

}

该函数是在epoll_wait中调用的等待函数,其等待被ep_poll_callback唤醒,然后调用ep_send_events来把到达事件copy到用户空间,然后

epoll_wait才返回。

最后我们来看看ep_poll_callback函数和ep_send_events函数的同步,因为他们都要操作ready
queue。

eventpoll中巧妙地设置了2种类型的锁,一个是mtx,是个mutex类型,是对该描述符操作的基本同步锁,可以睡眠;所以又存在了另外一个

锁,lock,它是一个spinlock类型,不允许睡眠,所以用在ep_poll_callback中,注意mtx不能用于此。

注意由于ep_poll_callback函数中会涉及到对eventpoll的ovflist和rdllist成员的访问,所以在任意其它地方要访问时都要先加mxt,在加lock锁。

由于中断的到来时异步的,为了方便,先看ep_send_events函数。

[cpp] view
plaincopy

static int ep_send_events(struct eventpoll *ep, struct epoll_event __user *events,

int maxevents)

{

int eventcnt, error = -EFAULT, pwake = 0;

unsigned int revents;

unsigned long flags;

struct epitem *epi, *nepi;

struct list_head txlist;

INIT_LIST_HEAD(&txlist);

/*

* We need to lock this because we could be hit by

* eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL).

*/

mutex_lock(&ep->mtx);

/*

* Steal the ready list, and re-init the original one to the

* empty list. Also, set ep->ovflist to NULL so that events

* happening while looping w/out locks, are not lost. We cannot

* have the poll callback to queue directly on ep->rdllist,

* because we are doing it in the loop below, in a lockless way.

*/

spin_lock_irqsave(&ep->lock, flags);

list_splice(&ep->rdllist, &txlist);

INIT_LIST_HEAD(&ep->rdllist);

ep->ovflist = NULL;

spin_unlock_irqrestore(&ep->lock, flags);

/*

* We can loop without lock because this is a task private list.

* We just splice'd out the ep->rdllist in ep_collect_ready_items().

* Items cannot vanish during the loop because we are holding "mtx".

*/

for (eventcnt = 0; !list_empty(&txlist) && eventcnt < maxevents;) {

epi = list_first_entry(&txlist, struct epitem, rdllink);

list_del_init(&epi->rdllink);

/*

* Get the ready file event set. We can safely use the file

* because we are holding the "mtx" and this will guarantee

* that both the file and the item will not vanish.

*/

revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);

revents &= epi->event.events;

/*

* Is the event mask intersect the caller-requested one,

* deliver the event to userspace. Again, we are holding

* "mtx", so no operations coming from userspace can change

* the item.

*/

if (revents) {

if (__put_user(revents,

&events[eventcnt].events) ||

__put_user(epi->event.data,

&events[eventcnt].data))

goto errxit;

if (epi->event.events & EPOLLONESHOT)

epi->event.events &= EP_PRIVATE_BITS;

eventcnt++;

}

/*

* At this point, noone can insert into ep->rdllist besides

* us. The epoll_ctl() callers are locked out by us holding

* "mtx" and the poll callback will queue them in ep->ovflist.

*/

if (!(epi->event.events & EPOLLET) &&

(revents & epi->event.events))

list_add_tail(&epi->rdllink, &ep->rdllist);

}

error = 0;

errxit:

spin_lock_irqsave(&ep->lock, flags);

/*

* During the time we spent in the loop above, some other events

* might have been queued by the poll callback. We re-insert them

* inside the main ready-list here.

*/

for (nepi = ep->ovflist; (epi = nepi) != NULL;

nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {

/*

* If the above loop quit with errors, the epoll item might still

* be linked to "txlist", and the list_splice() done below will

* take care of those cases.

*/

if (!ep_is_linked(&epi->rdllink))

list_add_tail(&epi->rdllink, &ep->rdllist);

}

/*

* We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after

* releasing the lock, events will be queued in the normal way inside

* ep->rdllist.

*/

ep->ovflist = EP_UNACTIVE_PTR;

/*

* In case of error in the event-send loop, or in case the number of

* ready events exceeds the userspace limit, we need to splice the

* "txlist" back inside ep->rdllist.

*/

list_splice(&txlist, &ep->rdllist);

if (!list_empty(&ep->rdllist)) {

/*

* Wake up (if active) both the eventpoll wait list and the ->poll()

* wait list (delayed after we release the lock).

*/

if (waitqueue_active(&ep->wq))

wake_up_locked(&ep->wq);

if (waitqueue_active(&ep->poll_wait))

pwake++;

}

spin_unlock_irqrestore(&ep->lock, flags);

mutex_unlock(&ep->mtx);

/* We have to call this outside the lock */

if (pwake)

ep_poll_safewake(&psw, &ep->poll_wait);

return eventcnt == 0 ? error: eventcnt;

}

该函数的注释也很清晰,不过我们从总体上分析下。

首先函数加mtx锁,这时必须的。

然后得工作是要读取ready
queue,但是中断会写这个成员,所以要加spinlock;但是接下来的工作会sleep,所以在整个loop都加spinlock显然

会阻塞ep_poll_callback函数,从而阻塞中断,这是个很不好的行为,也不可取。于是epoll中在eventpoll中设置了另一个成员ovflist。在读取ready

queue前,我们设置该成员为NULL,然后就可以释放spinlock了。为什么这样可行呢,因为对应的,在ep_poll_callback中,获取spinlock后,对于

到达的事件并不总是放入ready
queue,而是先判断ovflist是否为EP_UNACTIVE_PTR。

[cpp] view
plaincopy

if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {

/* 进入此处说明用用户进程在调用ep_poll_callback,所以把事件加入ovflist中,而不是ready queue中*/

if (epi->next == EP_UNACTIVE_PTR) {/* 如果此处条件不成立,说明该epi已经在ovflist中,所以直接返回*/

epi->next = ep->ovflist;

ep->ovflist = epi;

}

goto out_unlock;

}

所以在此期间,到达的事件放入了ovflist中。当loop结束后,函数接着遍历该list,添加到ready
queue中,最后设置ovflist为EP_UNACTIVE_PTR,

这样下次中断中的事件可以放入ready
queue了。最后判断是否有其他epoll_wait调用被阻塞,则唤醒。

从源代码中,可以看出epoll的几大优点:

用户传入的信息保存在内核中了,无需每次传入
事件监听机制不在是
整个监听队列,而是每个监听套接字在有事件到达时通过等待回调函数异步通知epoll,然后再返回给用户。

同时epoll中的同步机制也是一个内核编程的设计经典,值得深入理解。

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: