您的位置:首页 > 理论基础 > 数据结构算法

※数据结构※→☆非线性结构(tree)☆============二叉树 链式存储结构(tree binary list)(二十一)

2013-09-27 10:10 661 查看
二叉树

在计算机科学中,二叉树是每个结点最多有两个子树的有序树。通常子树的根被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用作二叉查找树和二叉堆或是二叉排序树。二叉树的每个结点至多只有二棵子树(不存在出度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2的 i -1次方个结点;深度为k的二叉树至多有2^(k) -1个结点;对任何一棵二叉树T,如果其终端结点数(即叶子结点数)为,出度为2的结点数为,则=+
1。

基本形态

二叉树也是递归定义的,其结点有左右子树之分,逻辑上二叉树有五种基本形态:

(1)空二叉树——(a);

(2)只有一个根结点的二叉树——(b);

(3)只有左子树——(c);

(4)只有右子树——(d);

(5)完全二叉树——(e)

注意:尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。

重要概念

(1)完全二叉树——若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层有叶子结点,并且叶子结点都是从左到右依次排布,这就是完全二叉树。

(2)满二叉树——除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树。

(3)深度——二叉树的层数,就是高度。

性质

(1) 在二叉树中,第i层的结点总数不超过2^(i-1);

(2) 深度为h的二叉树最多有2^h-1个结点(h>=1),最少有h个结点;

(3) 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;

(4) 具有n个结点的完全二叉树的深度为int(log2n)+1

(5)有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:

若I为结点编号则 如果I>1,则其父结点的编号为I/2;

如果2*I<=N,则其左儿子(即左子树的根结点)的编号为2*I;若2*I>N,则无左儿子;

如果2*I+1<=N,则其右儿子的结点编号为2*I+1;若2*I+1>N,则无右儿子。

(6)给定N个节点,能构成h(N)种不同的二叉树。

h(N)为卡特兰数的第N项。h(n)=C(n,2*n)/(n+1)。

(7)设有i个枝点,I为所有枝点的道路长度总和,J为叶的道路长度总和J=I+2i

1.完全二叉树 (Complete Binary Tree)

若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层从右向左连续缺若干结点,这就是完全二叉树。

2.满二叉树 (Full Binary Tree)

一个高度为h的二叉树包含正是2^h-1元素称为满二叉树。



二叉树四种遍历

1.先序遍历 (仅二叉树)

指先访问根,然后访问孩子的遍历方式

非递归实现

利用栈实现,先取根节点,处理节点,然后依次遍历左节点,遇到有右节点压入栈,向左走到尽头。然后从栈中取出右节点,处理右子树。

/*** PreOrderTraversal
*
* @param	AL_ListSeq<T>& listOrder <OUT>
* @return	BOOL
* @note Pre-order traversal
* @attention 
*/
template<typename T> BOOL 
AL_TreeBinSeq<T>::PreOrderTraversal(AL_ListSeq<T>& listOrder) const
{
	if (NULL == m_pRootNode) {
		return FALSE;
	}

	listOrder.Clear();

	//Recursion Traversal
	PreOrderTraversal(m_pRootNode, listOrder);
	return TRUE;
	
	//Not Recursion Traversal
	AL_StackSeq<AL_TreeNodeBinSeq<T>*> cStack;
	AL_TreeNodeBinSeq<T>* pTreeNode = m_pRootNode;

	while (TRUE != cStack.IsEmpty() || NULL != pTreeNode) {
		while (NULL != pTreeNode) {
			listOrder.InsertEnd(pTreeNode->GetData());
			if (NULL != pTreeNode->GetChildRight()) {
				//push the child right to stack
				cStack.Push(pTreeNode->GetChildRight());
			}
			pTreeNode = pTreeNode->GetChildLeft();
		}

		if (TRUE == cStack.Pop(pTreeNode)) {
			if (NULL == pTreeNode) {
				return FALSE;
			}
		}
		else {
			return FALSE;
		}
		
	}
	return TRUE;
}


递归实现

/**
* PreOrderTraversal
*
* @param	const AL_TreeNodeBinSeq<T>* pCurTreeNode <IN>	
* @param	AL_ListSeq<T>& listOrder <OUT>
* @return	VOID
* @note Pre-order traversal
* @attention Recursion Traversal
*/
template<typename T> VOID 
AL_TreeBinSeq<T>::PreOrderTraversal(const AL_TreeNodeBinSeq<T>* pCurTreeNode, AL_ListSeq<T>& listOrder) const
{
	if (NULL == pCurTreeNode) {
		return;
	}
	//Do Something with root
	listOrder.InsertEnd(pCurTreeNode->GetData());

	if(NULL != pCurTreeNode->GetChildLeft()) {
		PreOrderTraversal(pCurTreeNode->GetChildLeft(), listOrder);
	}

	if(NULL != pCurTreeNode->GetChildRight()) {
		PreOrderTraversal(pCurTreeNode->GetChildRight(), listOrder);
	}
}


2.中序遍历(仅二叉树)

指先访问左(右)孩子,然后访问根,最后访问右(左)孩子的遍历方式

非递归实现
利用栈实现,先取根节点,然后依次遍历左节点,将左节点压入栈,向左走到尽头。然后从栈中取出左节点,处理节点。然后处理其右子树。

/**
* InOrderTraversal
*
* @param	AL_ListSeq<T>& listOrder <OUT>
* @return	BOOL
* @note In-order traversal
* @attention 
*/
template<typename T> BOOL 
AL_TreeBinSeq<T>::InOrderTraversal(AL_ListSeq<T>& listOrder) const
{
	if (NULL == m_pRootNode) {
		return FALSE;
	}

	listOrder.Clear();
	
	//Recursion Traversal
	InOrderTraversal(m_pRootNode, listOrder);
	return TRUE;

	//Not Recursion Traversal
	AL_StackSeq<AL_TreeNodeBinSeq<T>*> cStack;
	AL_TreeNodeBinSeq<T>* pTreeNode = m_pRootNode;

	while (TRUE != cStack.IsEmpty() || NULL != pTreeNode) {
		while (NULL != pTreeNode) {
			cStack.Push(pTreeNode);
			pTreeNode = pTreeNode->GetChildLeft();
		}

		if (TRUE == cStack.Pop(pTreeNode)) {
			if (NULL !=  pTreeNode) {
				listOrder.InsertEnd(pTreeNode->GetData());
				if (NULL != pTreeNode->GetChildRight()){
					//child right exist, push the node, and loop it's left child to push
					pTreeNode = pTreeNode->GetChildRight();
				}
				else {
					//to pop the node in the stack
					pTreeNode = NULL;
				}
			}
			else {
				return FALSE;
			}
		}
		else {
			return FALSE;
		}
	}

	return TRUE;
}


递归实现
/**
* InOrderTraversal
*
* @param	const AL_TreeNodeBinSeq<T>* pCurTreeNode <IN>	
* @param	AL_ListSeq<T>& listOrder <OUT>
* @return	VOID
* @note In-order traversal
* @attention Recursion Traversal
*/
template<typename T> VOID 
AL_TreeBinSeq<T>::InOrderTraversal(const AL_TreeNodeBinSeq<T>* pCurTreeNode, AL_ListSeq<T>& listOrder) const
{
	if (NULL == pCurTreeNode) {
		return;
	}
	
	if(NULL != pCurTreeNode->GetChildLeft()) {
		InOrderTraversal(pCurTreeNode->GetChildLeft(), listOrder);
	}

	//Do Something with root
	listOrder.InsertEnd(pCurTreeNode->GetData());

	if(NULL != pCurTreeNode->GetChildRight()) {
		InOrderTraversal(pCurTreeNode->GetChildRight(), listOrder);
	}
}


3.后序遍历(仅二叉树)

指先访问孩子,然后访问根的遍历方式

非递归实现

利用栈实现,先取根节点,然后依次遍历左节点,将左节点压入栈,向左走到尽头。然后从栈中取出左节点,处理节点。处理其右节点,还需要记录已经使用过的节点,比较麻烦和复杂。大致思路如下:

1.找到最左边的子节点
2.如果最左边的子节点有右节点,处理右节点(类似1)
3.从栈里弹出节点处理
3.当碰到左右节点都存在的节点时,需要进行记录了回归节点了。然后以当前节点的右子树进行处理
4.碰到回归节点时,把当前的最后一个元素消除(因为后面还会回归到这个点的)。

/**
* PostOrderTraversal
*
* @param	AL_ListSeq<T>& listOrder <OUT>
* @return	BOOL
* @note Post-order traversal
* @attention 
*/
template<typename T> BOOL 
AL_TreeBinSeq<T>::PostOrderTraversal(AL_ListSeq<T>& listOrder) const
{
	if (NULL == m_pRootNode) {
		return FALSE;
	}

	listOrder.Clear();

	//Recursion Traversal
	PostOrderTraversal(m_pRootNode, listOrder);
	return TRUE;

	//Not Recursion Traversal
	AL_StackSeq<AL_TreeNodeBinSeq<T>*> cStack;
	AL_TreeNodeBinSeq<T>* pTreeNode = m_pRootNode;
	AL_StackSeq<AL_TreeNodeBinSeq<T>*> cStackReturn;
	AL_TreeNodeBinSeq<T>* pTreeNodeReturn = NULL;

	while (TRUE != cStack.IsEmpty() || NULL != pTreeNode) {
		while (NULL != pTreeNode) {
			cStack.Push(pTreeNode);
			if (NULL != pTreeNode->GetChildLeft()) {
				pTreeNode = pTreeNode->GetChildLeft();
			}
			else {
				//has not left child, get the right child
				pTreeNode = pTreeNode->GetChildRight();
			}
		}

		if (TRUE == cStack.Pop(pTreeNode)) {
			if (NULL !=  pTreeNode) {
				listOrder.InsertEnd(pTreeNode->GetData());
				if (NULL != pTreeNode->GetChildLeft() && NULL != pTreeNode->GetChildRight()){
					//child right exist
					cStackReturn.Top(pTreeNodeReturn);
					if (pTreeNodeReturn != pTreeNode) {
						listOrder.RemoveAt(listOrder.Length()-1);
						cStack.Push(pTreeNode);
						cStackReturn.Push(pTreeNode);
						pTreeNode = pTreeNode->GetChildRight();
					}
					else {
						//to pop the node in the stack
						cStackReturn.Pop(pTreeNodeReturn);
						pTreeNode = NULL;
					}
				}
				else {
					//to pop the node in the stack
					pTreeNode = NULL;
				}
			}
			else {
				return FALSE;
			}
		}
		else {
			return FALSE;
		}
	}

	return TRUE;
}


递归实现
/**
* PostOrderTraversal
*
* @param	const AL_TreeNodeBinSeq<T>* pCurTreeNode <IN>	
* @param	AL_ListSeq<T>& listOrder <OUT>
* @return	VOID
* @note Post-order traversal
* @attention Recursion Traversal
*/
template<typename T> VOID 
AL_TreeBinSeq<T>::PostOrderTraversal(const AL_TreeNodeBinSeq<T>* pCurTreeNode, AL_ListSeq<T>& listOrder) const
{
	if (NULL == pCurTreeNode) {
		return;
	}

	if(NULL != pCurTreeNode->GetChildLeft()) {
		PostOrderTraversal(pCurTreeNode->GetChildLeft(), listOrder);
	}

	if(NULL != pCurTreeNode->GetChildRight()) {
		PostOrderTraversal(pCurTreeNode->GetChildRight(), listOrder);
	}

	//Do Something with root
	listOrder.InsertEnd(pCurTreeNode->GetData());
}


4.层次遍历

一层一层的访问,所以一般用广度优先遍历。

非递归实现
利用链表或者队列均可实现,先取根节点压入链表或者队列,依次从左往右体访问子节点,压入链表或者队列。直至处理完所有节点。

/**
* LevelOrderTraversal
*
* @param	AL_ListSeq<T>& listOrder <OUT>
* @return	BOOL
* @note Level-order traversal
* @attention 
*/
template<typename T> BOOL 
AL_TreeBinSeq<T>::LevelOrderTraversal(AL_ListSeq<T>& listOrder) const
{
	if (TRUE == IsEmpty()) {
		return FALSE;
	}

	if (NULL == m_pRootNode) {
		return FALSE;
	}
	listOrder.Clear();
	/*
	AL_ListSeq<AL_TreeNodeBinSeq<T>*> listNodeOrder;
	listNodeOrder.InsertEnd(m_pRootNode);
	//loop the all node
	DWORD dwNodeOrderLoop = 0x00;
	AL_TreeNodeBinSeq<T>* pNodeOrderLoop = NULL;
	AL_TreeNodeBinSeq<T>* pNodeOrderChild = NULL;
	while (TRUE == listNodeOrder.Get(pNodeOrderLoop, dwNodeOrderLoop)) {
		dwNodeOrderLoop++;
		if (NULL != pNodeOrderLoop) {
			listOrder.InsertEnd(pNodeOrderLoop->GetData());
			pNodeOrderChild = pNodeOrderLoop->GetChildLeft();
			if (NULL != pNodeOrderChild) {
				queueOrder.Push(pNodeOrderChild);
			}
			pNodeOrderChild = pNodeOrderLoop->GetChildRight();
			if (NULL != pNodeOrderChild) {
				queueOrder.Push(pNodeOrderChild);
			}
		}
		else {
			//error
			return FALSE;
		}
	}
	return TRUE;
	*/
	
	AL_QueueSeq<AL_TreeNodeBinSeq<T>*> queueOrder;
	queueOrder.Push(m_pRootNode);
	
	AL_TreeNodeBinSeq<T>* pNodeOrderLoop = NULL;
	AL_TreeNodeBinSeq<T>* pNodeOrderChild = NULL;
	while (FALSE == queueOrder.IsEmpty()) {
		if (TRUE == queueOrder.Pop(pNodeOrderLoop)) {
			if (NULL != pNodeOrderLoop) {
				listOrder.InsertEnd(pNodeOrderLoop->GetData()); 
				pNodeOrderChild = pNodeOrderLoop->GetChildLeft();
				if (NULL != pNodeOrderChild) {
					queueOrder.Push(pNodeOrderChild);
				}
				pNodeOrderChild = pNodeOrderLoop->GetChildRight();
				if (NULL != pNodeOrderChild) {
					queueOrder.Push(pNodeOrderChild);
				}
			}
			else {
				return FALSE;
			}
		}
		else {
			return FALSE;
		}
	}
	return TRUE;
}


递归实现 (无)

======================================================================================================

树(tree)

树(tree)是包含n(n>0)个结点的有穷集合,其中:

每个元素称为结点(node);
有一个特定的结点被称为根结点或树根(root)。
除根结点之外的其余数据元素被分为m(m≥0)个互不相交的集合T1,T2,……Tm-1,其中每一个集合Ti(1<=i<=m)本身也是一棵树,被称作原树的子树(subtree)。

树也可以这样定义:树是由根结点和若干颗子树构成的。树是由一个集合以及在该集合上定义的一种关系构成的。集合中的元素称为树的结点,所定义的关系称为父子关系。父子关系在树的结点之间建立了一个层次结构。在这种层次结构中有一个结点具有特殊的地位,这个结点称为该树的根结点,或称为树根。

我们可以形式地给出树的递归定义如下:

单个结点是一棵树,树根就是该结点本身。
设T1,T2,..,Tk是树,它们的根结点分别为n1,n2,..,nk。用一个新结点n作为n1,n2,..,nk的父亲,则得到一棵新树,结点n就是新树的根。我们称n1,n2,..,nk为一组兄弟结点,它们都是结点n的子结点。我们还称n1,n2,..,nk为结点n的子树。
空集合也是树,称为空树。空树中没有结点。




树的四种遍历

1.先序遍历 (仅二叉树)

指先访问根,然后访问孩子的遍历方式

2.中序遍历(仅二叉树)

指先访问左(右)孩子,然后访问根,最后访问右(左)孩子的遍历方式

3.后序遍历(仅二叉树)

指先访问孩子,然后访问根的遍历方式

4.层次遍历

一层一层的访问,所以一般用广度优先遍历。

======================================================================================================

树结点 链式存储结构(tree node list)



结点:

包括一个数据元素及若干个指向其它子树的分支;例如,A,B,C,D等。

在数据结构的图形表示中,对于数据集合中的每一个数据元素用中间标有元素值的方框表示,一般称之为数据结点,简称结点。

在C语言中,链表中每一个元素称为“结点”,每个结点都应包括两个部分:一为用户需要用的实际数据;二为下一个结点的地址,即指针域和数据域。

数据结构中的每一个数据结点对应于一个储存单元,这种储存单元称为储存结点,也可简称结点

树结点(树节点):




树节点相关术语:

节点的度:一个节点含有的子树的个数称为该节点的度;
叶节点或终端节点:度为0的节点称为叶节点;
非终端节点或分支节点:度不为0的节点;
双亲节点或父节点:若一个结点含有子节点,则这个节点称为其子节点的父节点;
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;
兄弟节点:具有相同父节点的节点互称为兄弟节点;
节点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推;
堂兄弟节点:双亲在同一层的节点互为堂兄弟;
节点的祖先:从根到该节点所经分支上的所有节点;
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。

根据树结点的相关定义,采用“双亲孩子表示法”。其属性如下:

DWORD								m_dwLevel;				//Node levels: starting from the root to start defining the root of the first layer, the root node is a sub-layer 2, and so on;	
	T									m_data;					//the friend class can use it directly

	AL_TreeNodeList<T>*						m_pParent;				//Parent tree node
	AL_ListSingle<AL_TreeNodeList<T>*>		m_listChild;			//All Child tree node


树的几种表示法



在实际中,可使用多种形式的存储结构来表示树,既可以采用顺序存储结构,也可以采用链式存储结构,但无论采用何种存储方式,都要求存储结构不但能存储各结点本身的数据信息,还要能唯一地反映树中各结点之间的逻辑关系。

1.双亲表示法

由于树中的每个结点都有唯一的一个双亲结点,所以可用一组连续的存储空间(一维数组)存储树中的各个结点,数组中的一个元素表示树中的一个结点,每个结点含两个域,数据域存放结点本身信息,双亲域指示本结点的双亲结点在数组中位置。




2.孩子表示法

1.多重链表:每个结点有多个指针域,分别指向其子树的根

1)结点同构:结点的指针个数相等,为树的度k,这样n个结点度为k的树必有n(k-1)+1个空链域.




2)结点不同构:结点指针个数不等,为该结点的度d




2.孩子链表:每个结点的孩子结点用单链表存储,再用含n个元素的结构数组指向每个孩子链表




3.双亲孩子表示法

1.双亲表示法,PARENT(T,x)可以在常量时间内完成,但是求结点的孩子时需要遍历整个结构。

2.孩子链表表示法,适于那些涉及孩子的操作,却不适于PARENT(T,x)操作。

3.将双亲表示法和孩子链表表示法合在一起,可以发挥以上两种存储结构的优势,称为带双亲的孩子链表表示法




4.双亲孩子兄弟表示法 (二叉树专用)

又称为二叉树表示法,以二叉链表作为树的存储结构。







链式存储结构

在计算机中用一组任意的存储单元存储线性表的数据元素(这组存储单元可以是连续的,也可以是不连续的).

它不要求逻辑上相邻的元素在物理位置上也相邻.因此它没有顺序存储结构所具有的弱点,但也同时失去了顺序表可随机存取的优点.

链式存储结构特点:

1、比顺序存储结构的存储密度小 (每个节点都由数据域和指针域组成,所以相同空间内假设全存满的话顺序比链式存储更多)。

2、逻辑上相邻的节点物理上不必相邻。

3、插入、删除灵活 (不必移动节点,只要改变节点中的指针)。

4、查找结点时链式存储要比顺序存储慢。

5、每个结点是由数据域和指针域组成。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

以后的笔记潇汀会尽量详细讲解一些相关知识的,希望大家继续关注我的博客。

本节笔记到这里就结束了。

潇汀一有时间就会把自己的学习心得,觉得比较好的知识点写出来和大家一起分享。

编程开发的路很长很长,非常希望能和大家一起交流,共同学习,共同进步。

如果文章中有什么疏漏的地方,也请大家指正。也希望大家可以多留言来和我探讨编程相关的问题。

最后,谢谢你们一直的支持~~~

C++完整个代码示例(代码在VS2005下测试可运行)




AL_TreeNodeBinList.h

/**
  @(#)$Id: AL_TreeNodeBinList.h 59 2013-09-26 03:38:35Z xiaoting $
  @brief	Each of the data structure corresponds to a data node storage unit, this storage unit is called storage node, the node can 
  also be referred to.
	
  The related concepts of tree node 
  1.degree		degree node: A node of the subtree containing the number is called the node degree;
  2.leaf			leaf nodes or terminal nodes: degree 0 are called leaf nodes;
  3.branch		non-terminal node or branch node: node degree is not 0;
  4.parent		parent node or the parent node: If a node contains a child node, this node is called its child node's parent;
  5.child			child node or child node: A node subtree containing the root node is called the node's children;
  6.slibing		sibling nodes: nodes with the same parent node is called mutual sibling;
  7.ancestor		ancestor node: from the root to the node through all the nodes on the branch;
  8.descendant	descendant nodes: a node in the subtree rooted at any node is called the node's descendants.

  ////////////////////////////////Binary Tree//////////////////////////////////////////
  In computer science, a binary tree is that each node has at most two sub-trees ordered tree. Usually the root of the subtree is 
  called "left subtree" (left subtree) and the "right subtree" (right subtree). Binary tree is often used as a binary search tree 
  and binary heap or a binary sort tree. Binary tree each node has at most two sub-tree (does not exist a degree greater than two 
  nodes), left and right sub-tree binary tree of the points, the order can not be reversed. Binary i-th layer of at most 2 power 
  nodes i -1; binary tree of depth k at most 2 ^ (k) -1 nodes; for any binary tree T, if it is the terminal nodes (i.e. leaf nodes) 
  is, the nodes of degree 2 is, then = + 1.

  ////////////////////////////////Chain storage structure//////////////////////////////////////////
  The computer using a set of arbitrary linear table storage unit stores data elements (which may be a continuous plurality of memory 
  cells, it can be discontinuous).

  It does not require the logic elements of adjacent physical location is adjacent to and therefore it is not sequential storage 
  structure has a weakness, but also lost the sequence table can be accessed randomly advantages.

  Chain store structural features:
  1, compared with sequential storage density storage structure (each node consists of data fields and pointers domains, so the same 
  space is full, then assume full order of more than chain stores).
  2, the logic is not required on the adjacent node is physically adjacent.
  3, insert, delete and flexible (not the mobile node, change the node as long as the pointer).
  4, find the node when stored sequentially slower than the chain stores.
  5, each node is a pointer to the data fields and domains.

  @Author $Author: xiaoting $
  @Date $Date: 2013-09-26 11:38:35 +0800 (周四, 26 九月 2013) $
  @Revision $Revision: 59 $
  @URL $URL: https://svn.code.sf.net/p/xiaoting/game/trunk/MyProject/AL_DataStructure/groupinc/AL_TreeNodeBinList.h $
  @Header $Header: https://svn.code.sf.net/p/xiaoting/game/trunk/MyProject/AL_DataStructure/groupinc/AL_TreeNodeBinList.h 59 2013-09-26 03:38:35Z xiaoting $
 */

#ifndef CXX_AL_TREENODEBINLIST_H
#define CXX_AL_TREENODEBINLIST_H

#ifndef CXX_AL_LISTSINGLE_H
#include "AL_ListSingle.h"
#endif

#ifndef CXX_AL_QUEUELIST_H
#include "AL_QueueList.h"
#endif

///////////////////////////////////////////////////////////////////////////
//			AL_TreeNodeBinList
///////////////////////////////////////////////////////////////////////////

template<typename T> class AL_TreeBinList;

template<typename T> 
class AL_TreeNodeBinList
{
public:
	/**
	* Destruction
	*
	* @param
	* @return
	* @note
	* @attention 
	*/
	~AL_TreeNodeBinList();
	
	/**
	* GetLevel
	*
	* @param
	* @return	DWORD
	* @note Node levels: starting from the root to start defining the root of the first layer, the root node is a sub-layer 2, and so on;	
	* @attention 
	*/
	DWORD GetLevel() const;

	/**
	* SetLevel
	*
	* @param	DWORD dwLevel <IN>
	* @return	
	* @note Node levels: starting from the root to start defining the root of the first layer, the root node is a sub-layer 2, and so on;	
	* @attention 
	*/
	VOID SetLevel(DWORD dwLevel);

	/**
	* GetData
	*
	* @param
	* @return	T
	* @note 
	* @attention 
	*/
	T GetData() const;

	/**
	* SetData
	*
	* @param	const T& tTemplate <IN>
	* @return	
	* @note 
	* @attention 
	*/
	VOID SetData(const T& tTemplate);

	/**
	* GetParent
	*
	* @param	
	* @return	AL_TreeNodeBinList<T>*	
	* @note parent node pointer, not to manager memory
	* @attention 
	*/
	AL_TreeNodeBinList<T>*	GetParent() const;

	/**
	* SetParent
	*
	* @param	DWORD dwIndex <IN>
	* @param	AL_TreeNodeBinList<T>* pParent <IN>
	* @return	BOOL
	* @note parent node pointer, not to manager memory
	* @attention as the child to set the parent at the index (from the left of parent's child ) [0x00: left child, 0x01: right child]
	*/
	BOOL SetParent(DWORD dwIndex, AL_TreeNodeBinList<T>* pParent);

	/**
	* SetParentLeft
	*
	* @param	AL_TreeNodeBinList<T>* pParent <IN>
	* @return	BOOL
	* @note parent node pointer, not to manager memory
	* @attention as the child to set the parent at the left (from the left of parent's child )
	*/
	BOOL SetParentLeft(AL_TreeNodeBinList<T>* pParent);

	/**
	* SetParentRight
	*
	* @param	AL_TreeNodeBinList<T>* pParent <IN>
	* @return	BOOL
	* @note parent node pointer, not to manager memory
	* @attention as the child to set the parent at the right (from the right of parent's child )
	*/
	BOOL SetParentRight(AL_TreeNodeBinList<T>* pParent);

	/**
	* Insert
	*
	* @param	DWORD dwIndex <IN>
	* @param	AL_TreeNodeBinList<T>* pInsertChild <IN> 
	* @return	BOOL
	* @note inset the const AL_TreeNodeBinList<T>*  into the child notes at the position [0x00: left child, 0x01: right child]
	* @attention
	*/
	BOOL Insert(DWORD dwIndex, AL_TreeNodeBinList<T>* pInsertChild);

	/**
	* InsertLeft
	*
	* @param	AL_TreeNodeBinList<T>* pInsertChild <IN> 
	* @return	BOOL
	* @note inset the const AL_TreeNodeBinList<T>*  into the child notes at the left
	* @attention
	*/
	BOOL InsertLeft(AL_TreeNodeBinList<T>* pInsertChild);

	/**
	* InsertRight
	*
	* @param	AL_TreeNodeBinList<T>* pInsertChild <IN> 
	* @return	BOOL
	* @note inset the const AL_TreeNodeBinList<T>*  into the child notes at the right
	* @attention
	*/
	BOOL InsertRight(AL_TreeNodeBinList<T>* pInsertChild);
	
	/**
	* Remove
	*
	* @param	AL_TreeNodeBinList<T>* pRemoveChild
	* @return	BOOL
	* @note remove the notes in the child
	* @attention
	*/
	BOOL Remove(AL_TreeNodeBinList<T>* pRemoveChild);

	/**
	* Remove
	*
	* @param	DWORD dwIndex <IN>
	* @return	BOOL
	* @note remove the child notes at the position [0x00: left child, 0x01: right child]
	* @attention
	*/
	BOOL Remove(DWORD dwIndex);

	/**
	* RemoveLeft
	*
	* @param
	* @return	BOOL
	* @note remove the child notes at the left
	* @attention
	*/
	BOOL RemoveLeft();

	/**
	* RemoveRight
	*
	* @param
	* @return	BOOL
	* @note remove the child notes at the right
	* @attention
	*/
	BOOL RemoveRight();

	/**
	* GetChildLeft
	*
	* @param	
	* @return	AL_TreeNodeBinList<T>*
	* @note 
	* @attention
	*/
	AL_TreeNodeBinList<T>* GetChildLeft() const;

	/**
	* GetChildRight
	*
	* @param	
	* @return	AL_TreeNodeBinList<T>*
	* @note 
	* @attention
	*/
	AL_TreeNodeBinList<T>* GetChildRight() const;
	
	/**
	* GetDegree
	*
	* @param
	* @return	DWORD
	* @note degree node: A node of the subtree containing the number is called the node degree;
	* @attention 
	*/
	DWORD GetDegree() const;

	/**
	* IsLeaf
	*
	* @param
	* @return	BOOL
	* @note leaf nodes or terminal nodes: degree 0 are called leaf nodes;
	* @attention 
	*/
	BOOL IsLeaf() const;

	/**
	* IsBranch
	*
	* @param
	* @return	BOOL
	* @note non-terminal node or branch node: node degree is not 0;
	* @attention 
	*/
	BOOL IsBranch() const;

	/**
	* IsParent
	*
	* @param	const AL_TreeNodeBinList<T>* pChild <IN>
	* @return	BOOL
	* @note parent node or the parent node: If a node contains a child node, this node is called its child 
	* @attention 
	*/
	BOOL IsParent(const AL_TreeNodeBinList<T>* pChild) const;

	/**
	* GetSibling
	*
	* @param	AL_ListSingle<AL_TreeNodeBinList<T>*>& listSibling <OUT>
	* @return	BOOL
	* @note sibling nodes: nodes with the same parent node is called mutual sibling;
	* @attention 
	*/
	BOOL GetSibling(AL_ListSingle<AL_TreeNodeBinList<T>*>& listSibling) const;

	/**
	* GetAncestor
	*
	* @param	AL_ListSingle<AL_TreeNodeBinList<T>*>& listAncestor <OUT>
	* @return	BOOL
	* @note ancestor node: from the root to the node through all the nodes on the branch;
	* @attention 
	*/
	BOOL GetAncestor(AL_ListSingle<AL_TreeNodeBinList<T>*>& listAncestor) const;

	/**
	* GetDescendant
	*
	* @param	AL_ListSingle<AL_TreeNodeBinList<T>*>& listDescendant <OUT>
	* @return	BOOL
	* @note ancestor node: from the root to the node through all the nodes on the branch;
	* @attention 
	*/
	BOOL GetDescendant(AL_ListSingle<AL_TreeNodeBinList<T>*>& listDescendant) const;

protected:
private:
	friend class AL_TreeBinList<T>;

	/**
	* Construction
	*
	* @param
	* @return
	* @note private the Construction, avoid the others use it
	* @attention
	*/
	AL_TreeNodeBinList();
	
	/**
	* Construction
	*
	* @param	const T& tTemplate <IN>
	* @return
	* @note
	* @attention private the Construction, avoid the others use it
	*/
	AL_TreeNodeBinList(const T& tTemplate);

	/**
	*Copy Construct
	*
	* @param	const AL_TreeNodeBinList<T>& cAL_TreeNodeBinList
	* @return
	*/
	AL_TreeNodeBinList(const AL_TreeNodeBinList<T>& cAL_TreeNodeBinList);

	/**
	*Assignment
	*
	* @param	const AL_TreeNodeBinList<T>& cAL_TreeNodeBinList
	* @return	AL_TreeNodeBinList<T>&
	*/
	AL_TreeNodeBinList<T>& operator = (const AL_TreeNodeBinList<T>& cAL_TreeNodeBinList);

public:
protected:
private:
	DWORD								m_dwLevel;				//Node levels: starting from the root to start defining the root of the first layer, the root node is a sub-layer 2, and so on;	
	T									m_data;					//the friend class can use it directly

	AL_TreeNodeBinList<T>*				m_pParent;				//Parent position
	AL_TreeNodeBinList<T>*				m_pChildLeft;			//Child tree node left
	AL_TreeNodeBinList<T>*				m_pChildRight;			//Child tree node right
};

///////////////////////////////////////////////////////////////////////////
//			AL_TreeNodeBinList
///////////////////////////////////////////////////////////////////////////

/**
* Construction
*
* @param
* @return
* @note private the Construction, avoid the others use it
* @attention
*/
template<typename T>
AL_TreeNodeBinList<T>::AL_TreeNodeBinList():
m_dwLevel(0x00),
m_pParent(NULL),
m_pChildLeft(NULL),
m_pChildRight(NULL)
{

}

/**
* Construction
*
* @param	const T& tTemplate <IN>
* @return
* @note
* @attention private the Construction, avoid the others use it
*/
template<typename T>
AL_TreeNodeBinList<T>::AL_TreeNodeBinList(const T& tTemplate):
m_dwLevel(0x00),
m_data(tTemplate),
m_pParent(NULL),
m_pChildLeft(NULL),
m_pChildRight(NULL)
{

}

/**
* Destruction
*
* @param
* @return
* @note
* @attention 
*/
template<typename T>
AL_TreeNodeBinList<T>::~AL_TreeNodeBinList()
{
	//it doesn't matter to clear the pointer or not.
	m_dwLevel = 0x00;
	m_pParent = NULL;
	m_pChildLeft = NULL;
	m_pChildRight = NULL;
}

/**
* GetLevel
*
* @param
* @return	DWORD
* @note Node levels: starting from the root to start defining the root of the first layer, the root node is a sub-layer 2, and so on;	
* @attention 
*/
template<typename T> DWORD 
AL_TreeNodeBinList<T>::GetLevel() const
{
	return m_dwLevel;
}

/**
* SetLevel
*
* @param	DWORD dwLevel <IN>
* @return	
* @note Node levels: starting from the root to start defining the root of the first layer, the root node is a sub-layer 2, and so on;	
* @attention 
*/
template<typename T> VOID 
AL_TreeNodeBinList<T>::SetLevel(DWORD dwLevel)
{
	m_dwLevel = dwLevel;
}

/**
* GetData
*
* @param
* @return	T
* @note 
* @attention 
*/
template<typename T> T 
AL_TreeNodeBinList<T>::GetData() const
{
	return m_data;
}

/**
* SetData
*
* @param	const T& tTemplate <IN>
* @return	
* @note 
* @attention 
*/
template<typename T> VOID 
AL_TreeNodeBinList<T>::SetData(const T& tTemplate)
{
	m_data = tTemplate;
}

/**
* GetParent
*
* @param	
* @return	AL_TreeNodeBinList<T>*	
* @note parent node pointer, not to manager memory
* @attention 
*/
template<typename T> AL_TreeNodeBinList<T>* 
AL_TreeNodeBinList<T>::GetParent() const
{
	return m_pParent;
}

/**
* SetParent
*
* @param	DWORD dwIndex <IN>
* @param	AL_TreeNodeBinList<T>* pParent <IN>
* @return	BOOL
* @note parent node pointer, not to manager memory
* @attention as the child to set the parent at the index (from the left of parent's child ) [0x00: left child, 0x01: right child]
*/
template<typename T> BOOL 
AL_TreeNodeBinList<T>::SetParent(DWORD dwIndex, AL_TreeNodeBinList<T>* pParent)
{
	if (NULL == pParent) {
		return FALSE;
	}

	BOOL  bSetParent = FALSE;
	bSetParent = pParent->Insert(dwIndex, this);
	if (TRUE == bSetParent) {
		//current node insert to the parent successfully
		if (NULL != m_pParent) {
			//current node has parent
			m_pParent->Remove(this);
		}
		m_pParent = pParent;
	}
	return bSetParent;
}

/**
* SetParentLeft
*
* @param	AL_TreeNodeBinList<T>* pParent <IN>
* @return	
* @note parent node pointer, not to manager memory
* @attention as the child to set the parent at the left (from the left of parent's child )
*/
template<typename T> BOOL 
AL_TreeNodeBinList<T>::SetParentLeft(AL_TreeNodeBinList<T>* pParent)
{
	return SetParent(0x00, pParent);
}

/**
* SetParentRight
*
* @param	AL_TreeNodeBinList<T>* pParent <IN>
* @return	
* @note parent node pointer, not to manager memory
* @attention as the child to set the parent at the right (from the right of parent's child )
*/
template<typename T> BOOL 
AL_TreeNodeBinList<T>::SetParentRight(AL_TreeNodeBinList<T>* pParent)
{
	return SetParent(0x01, pParent);
}

/**
* Insert
*
* @param	DWORD dwIndex <IN>
* @param	AL_TreeNodeBinList<T>* pInsertChild <IN> 
* @return	BOOL
* @note inset the const AL_TreeNodeBinList<T>*  into the child notes at the position [0x00: left child, 0x01: right child]
* @attention
*/
template<typename T> BOOL 
AL_TreeNodeBinList<T>::Insert(DWORD dwIndex, AL_TreeNodeBinList<T>* pInsertChild)
{
	if (0x01 < dwIndex || NULL == pInsertChild) {
		return FALSE;
	}

	BOOL  bInsert = FALSE;
	if (0x00 == dwIndex && NULL == m_pChildLeft) {
		//left and the child left not exist
		m_pChildLeft = pInsertChild;
		bInsert = TRUE;
	}
	else if (0x01 == dwIndex && NULL == m_pChildRight) {
		//right and the child right not exist
		m_pChildRight = pInsertChild;
		bInsert = TRUE;
	}
	else {
		//no case
		bInsert = FALSE;
	}

	if (TRUE == bInsert) {
		if (GetLevel()+1 != pInsertChild->GetLevel()) {
			//deal with the child level
			INT iLevelDiff = pInsertChild->GetLevel() - GetLevel();

			AL_ListSingle<AL_TreeNodeBinList<T>*> listDescendant;
			if (FALSE == GetDescendant(listDescendant)) {
				return FALSE;
			}
			AL_TreeNodeBinList<T>* pDescendant = NULL;
			for (DWORD dwCnt=0; dwCnt<listDescendant.Length(); dwCnt++) {
				if (TRUE == listDescendant.Get(pDescendant, dwCnt)) {
					if (NULL != pDescendant) {
						//set child level
						pDescendant->SetLevel(pDescendant->GetLevel()-iLevelDiff+1);
					}
					else {
						//error
						return FALSE;
					}
				}
				else {
					//error
					return FALSE;
				}
			}
		}
		//child node insert to the current successfully
		pInsertChild->m_pParent = this;
	}
	return bInsert;
}

/**
* InsertLeft
*
* @param	AL_TreeNodeBinList<T>* pInsertChild <IN> 
* @return	BOOL
* @note inset the const AL_TreeNodeBinList<T>*  into the child notes at the left
* @attention
*/
template<typename T> BOOL 
AL_TreeNodeBinList<T>::InsertLeft(AL_TreeNodeBinList<T>* pInsertChild)
{
	return Insert(0x00, pInsertChild);
}

/**
* InsertRight
*
* @param	AL_TreeNodeBinList<T>* pInsertChild <IN> 
* @return	BOOL
* @note inset the const AL_TreeNodeBinList<T>*  into the child notes at the right
* @attention
*/
template<typename T> BOOL 
AL_TreeNodeBinList<T>::InsertRight(AL_TreeNodeBinList<T>* pInsertChild)
{
	return Insert(0x01, pInsertChild);
}

/**
* Remove
*
* @param	AL_TreeNodeBinList<T>* pRemoveChild
* @return	BOOL
* @note remove the notes in the child
* @attention
*/
template<typename T> BOOL 
AL_TreeNodeBinList<T>::Remove(AL_TreeNodeBinList<T>* pRemoveChild)
{
	BOOL bRemove = FALSE;
	if (m_pChildLeft == pRemoveChild) {
		m_pChildLeft = NULL;
		bRemove = TRUE;
	}
	else if (m_pChildRight ==  pRemoveChild) {
		m_pChildRight = NULL;
		bRemove = TRUE;
	}
	else {
		bRemove = FALSE;
	}
	return bRemove;
}

/**
* Remove
*
* @param	DWORD dwIndex <IN>
* @return	BOOL
* @note remove the child notes at the position [0x00: left child, 0x01: right child]
* @attention
*/
template<typename T> BOOL 
AL_TreeNodeBinList<T>::Remove(DWORD dwIndex)
{
	AL_TreeNodeBinList<T>* pRemoveChild = NULL;
	if (0x00 == dwIndex) {
		pRemoveChild = m_pChildLeft;
	}
	else if (0x01 == dwIndex) {
		pRemoveChild = m_pChildRight;
	}
	else {
		return FALSE;
	}

	return Remove(pRemoveChild);
}

/**
* RemoveLeft
*
* @param
* @return	BOOL
* @note remove the child notes at the left
* @attention
*/
template<typename T> BOOL 
AL_TreeNodeBinList<T>::RemoveLeft()
{
	return Remove(m_pChildLeft);
}

/**
* RemoveRight
*
* @param
* @return	BOOL
* @note remove the child notes at the right
* @attention
*/
template<typename T> BOOL 
AL_TreeNodeBinList<T>::RemoveRight()
{
	return Remove(m_pChildRight);
}

/**
* GetChildLeft
*
* @param	
* @return	AL_TreeNodeBinList<T>*
* @note 
* @attention
*/
template<typename T> AL_TreeNodeBinList<T>* 
AL_TreeNodeBinList<T>::GetChildLeft() const
{
	return m_pChildLeft;
}

/**
* GetChildRight
*
* @param	
* @return	AL_TreeNodeBinList<T>*
* @note 
* @attention
*/
template<typename T> AL_TreeNodeBinList<T>* 
AL_TreeNodeBinList<T>::GetChildRight() const
{
	return m_pChildRight;
}

/**
* GetDegree
*
* @param
* @return	DWORD
* @note degree node: A node of the subtree containing the number is called the node degree;
* @attention 
*/
template<typename T> DWORD 
AL_TreeNodeBinList<T>::GetDegree() const
{
	DWORD dwDegree = 0x00;
	if (NULL != m_pChildLeft) {
		dwDegree++;
	}
	if (NULL != m_pChildRight) {
		dwDegree++;
	}

	return dwDegree;
}

/**
* IsLeaf
*
* @param
* @return	BOOL
* @note leaf nodes or terminal nodes: degree 0 are called leaf nodes;
* @attention 
*/
template<typename T> BOOL 
AL_TreeNodeBinList<T>::IsLeaf() const
{
	return (0x00 == GetDegree()) ? TRUE:FALSE;
}

/**
* IsBranch
*
* @param
* @return	BOOL
* @note non-terminal node or branch node: node degree is not 0;
* @attention 
*/
template<typename T> BOOL 
AL_TreeNodeBinList<T>::IsBranch() const
{
	return (0x00 != GetDegree()) ? TRUE:FALSE;
}

/**
* IsParent
*
* @param	const AL_TreeNodeBinList<T>* pChild <IN>
* @return	BOOL
* @note parent node or the parent node: If a node contains a child node, this node is called its child 
* @attention 
*/
template<typename T> BOOL 
AL_TreeNodeBinList<T>::IsParent(const AL_TreeNodeBinList<T>* pChild) const
{
	if (NULL ==  pChild) {
		return FALSE;
	}
	// 	AL_TreeNodeBinList<T>* pCompare = NULL;
	// 	for (DWORD dwCnt=0; dwCnt<GetDegree(); dwCnt++) {
	// 		if (TRUE == m_listChild.Get(pCompare, dwCnt)) {
	// 			if (pCompare == pChild) {
	// 				//find the child
	// 				return TRUE;
	// 			}
	// 		}
	// 	}
	// 	return FALSE;

	if (this == pChild->m_pParent) {
		return TRUE;
	}
	return FALSE;
}

/**
* GetSibling
*
* @param	AL_ListSingle<AL_TreeNodeBinList<T>*>& listSibling <OUT>
* @return	BOOL
* @note sibling nodes: nodes with the same parent node is called mutual sibling;
* @attention 
*/
template<typename T> BOOL
AL_TreeNodeBinList<T>::GetSibling(AL_ListSingle<AL_TreeNodeBinList<T>*>& listSibling) const
{
	BOOL bSibling = FALSE;
	if (NULL == m_pParent) {
		//not parent node
		return bSibling;
	}

	listSibling.Clear();

	AL_TreeNodeBinList<T>* pParentChild = GetChildLeft();
	if (NULL != pParentChild) {
		if (pParentChild != this) {
			//not itself
			listSibling.InsertEnd(pParentChild);
			bSibling = TRUE;
		}
	}

	pParentChild = GetChildRight();
	if (NULL != pParentChild) {
		if (pParentChild != this) {
			//not itself
			listSibling.InsertEnd(pParentChild);
			bSibling = TRUE;
		}
	}

	return bSibling;
}

/**
* GetAncestor
*
* @param	AL_ListSingle<AL_TreeNodeBinList<T>*>& listAncestor <OUT>
* @return	BOOL
* @note ancestor node: from the root to the node through all the nodes on the branch;
* @attention 
*/
template<typename T> BOOL
AL_TreeNodeBinList<T>::GetAncestor(AL_ListSingle<AL_TreeNodeBinList<T>*>& listAncestor) const
{
	if (NULL == m_pParent) {
		//not parent node
		return FALSE;
	}

	listAncestor.Clear();
	AL_TreeNodeBinList<T>* pParent = m_pParent;
	while (NULL != pParent) {
		listAncestor.InsertEnd(pParent);
		pParent = pParent->m_pParent;
	}
	return TRUE;
}

/**
* GetDescendant
*
* @param	AL_ListSingle<AL_TreeNodeBinList<T>*>& listDescendant <OUT>
* @return	BOOL
* @note ancestor node: from the root to the node through all the nodes on the branch;
* @attention 
*/
template<typename T> BOOL 
AL_TreeNodeBinList<T>::GetDescendant(AL_ListSingle<AL_TreeNodeBinList<T>*>& listDescendant) const
{
	if (TRUE == IsLeaf()) {
		//child node
		return FALSE;
	}
	
	listDescendant.Clear();
	AL_TreeNodeBinList<T>* pDescendant = GetChildLeft();
	if (NULL != pDescendant) {
		listDescendant.InsertEnd(pDescendant);
	}

	pDescendant = GetChildRight();
	if (NULL != pDescendant) {
		listDescendant.InsertEnd(pDescendant);
	}

	//loop the all node in listDescendant
	DWORD dwDescendantLoop = 0x00;
	AL_TreeNodeBinList<T>* pDescendantLoop = NULL;
	while (TRUE == listDescendant.Get(pDescendant, dwDescendantLoop)) {
		dwDescendantLoop++;
		if (NULL != pDescendant) {
			pDescendantLoop = pDescendant->GetChildLeft();
			if (NULL != pDescendantLoop) {
				listDescendant.InsertEnd(pDescendantLoop);
			}

			pDescendantLoop = pDescendant->GetChildRight();
			if (NULL != pDescendantLoop) {
				listDescendant.InsertEnd(pDescendantLoop);
			}
		}
		else {
			//error
			return FALSE;
		}
	}
	return TRUE;
}

/**
*Assignment
*
* @param	const AL_TreeNodeBinList<T>& cAL_TreeNodeBinList
* @return	AL_TreeNodeBinList<T>&
*/
template<typename T> AL_TreeNodeBinList<T>& 
AL_TreeNodeBinList<T>::operator = (const AL_TreeNodeBinList<T>& cAL_TreeNodeBinList)
{
	m_dwLevel = cAL_TreeNodeBinList.m_dwLevel;
	m_data = cAL_TreeNodeBinList.m_data;
	m_pParent = cAL_TreeNodeBinList.m_pParent;
	m_pChildLeft = cAL_TreeNodeBinList.m_pChildLeft;
	m_pChildRight = cAL_TreeNodeBinList.m_pChildRight;
	return *this;
}
#endif // CXX_AL_TREENODEBINLIST_H
/* EOF */


AL_TreeBinList.h

/**
  @(#)$Id: AL_TreeBinList.h 58 2013-09-26 03:24:40Z xiaoting $
  @brief	Tree (tree) that contains n (n> 0) nodes of a finite set, where:
	(1) Each element is called node (node);
	(2) there is a particular node is called the root node or root (root).
	(3) In addition to the remaining data elements other than the root node is divided into m (m ≥ 0) disjoint set of T1, T2, ...... 
	Tm-1, wherein each set of Ti (1 <= i <= m ) itself is a tree, the original tree is called a subtree (subtree).
  
  
  Trees can also be defined as: the tree is a root node and several sub-tree consisting of stars. And a tree is a set defined on the 
  set consisting of a relationship. Elements in the collection known as a tree of nodes, the defined relationship is called 
  parent-child relationship. Parent-child relationship between the nodes of the tree establishes a hierarchy. In this there is a 
  hierarchy node has a special status, this node is called the root of the tree, otherwise known as root.

  We can give form to the tree recursively defined as follows:
	Single node is a tree, the roots is the node itself.
	Let T1, T2, .., Tk is a tree, the root node are respectively n1, n2, .., nk. With a new node n as n1, n2, .., nk's father, then 
	get a new tree node n is the new root of the tree. We call n1, n2, .., nk is a group of siblings, they are sub-node n junction. 
	We also said that n1, n2, .., nk is the sub-tree node n.

	Empty tree is also called the empty tree. Air no node in the tree.

 The related concepts of tree 
  1. Degree of tree: a tree, the maximum degree of the node of the tree is called degree;
  2. Height or depth of the tree: the maximum level of nodes in the tree;
  3. Forests: the m (m> = 0) disjoint trees set of trees called forest;

  The related concepts of tree node 
  1.degree		degree node: A node of the subtree containing the number is called the node degree;
  2.leaf			leaf nodes or terminal nodes: degree 0 are called leaf nodes;
  3.branch		non-terminal node or branch node: node degree is not 0;
  4.parent		parent node or the parent node: If a node contains a child node, this node is called its child node's parent;
  5.child			child node or child node: A node subtree containing the root node is called the node's children;
  6.slibing		sibling nodes: nodes with the same parent node is called mutual sibling;
  7.ancestor		ancestor node: from the root to the node through all the nodes on the branch;
  8.descendant	descendant nodes: a node in the subtree rooted at any node is called the node's descendants.
  
  ////////////////////////////////Binary Tree//////////////////////////////////////////
  In computer science, a binary tree is that each node has at most two sub-trees ordered tree. Usually the root of the subtree is 
  called "left subtree" (left subtree) and the "right subtree" (right subtree). Binary tree is often used as a binary search tree 
  and binary heap or a binary sort tree. Binary tree each node has at most two sub-tree (does not exist a degree greater than two 
  nodes), left and right sub-tree binary tree of the points, the order can not be reversed. Binary i-th layer of at most 2 power 
  nodes i -1; binary tree of depth k at most 2 ^ (k) -1 nodes; for any binary tree T, if it is the terminal nodes (i.e. leaf nodes) 
  is, the nodes of degree 2 is, then = + 1.

  ////////////////////////////////Complete Binary Tree//////////////////////////////////////////
  If set binary height of h, the h layer in addition, the other layers (1 ~ h-1) has reached the maximum number of nodes, right to 
  left, the h-layer node number of consecutive missing, this is a complete binary tree .

  ////////////////////////////////Full Binary Tree//////////////////////////////////////////
  A binary tree of height h is 2 ^ h-1 element is called a full binary tree.

  ////////////////////////////////Chain storage structure//////////////////////////////////////////
  The computer using a set of arbitrary linear table storage unit stores data elements (which may be a continuous plurality of memory 
  cells, it can be discontinuous).

  It does not require the logic elements of adjacent physical location is adjacent to and therefore it is not sequential storage 
  structure has a weakness, but also lost the sequence table can be accessed randomly advantages.

  Chain store structural features:
  1, compared with sequential storage density storage structure (each node consists of data fields and pointers domains, so the same 
  space is full, then assume full order of more than chain stores).
  2, the logic is not required on the adjacent node is physically adjacent.
  3, insert, delete and flexible (not the mobile node, change the node as long as the pointer).
  4, find the node when stored sequentially slower than the chain stores.
  5, each node is a pointer to the data fields and domains.

  @Author $Author: xiaoting $
  @Date $Date: 2013-09-26 11:24:40 +0800 (周四, 26 九月 2013) $
  @Revision $Revision: 58 $
  @URL $URL: https://svn.code.sf.net/p/xiaoting/game/trunk/MyProject/AL_DataStructure/groupinc/AL_TreeBinList.h $
  @Header $Header: https://svn.code.sf.net/p/xiaoting/game/trunk/MyProject/AL_DataStructure/groupinc/AL_TreeBinList.h 58 2013-09-26 03:24:40Z xiaoting $
 */

#ifndef CXX_AL_TREEBINLIST_H
#define CXX_AL_TREEBINLIST_H

#ifndef CXX_AL_LISTSINGLE_H
#include "AL_ListSingle.h"
#endif

#ifndef CXX_AL_QUEUELIST_H
#include "AL_QueueList.h"
#endif

#ifndef CXX_AL_TREENODEBINLIST_H
#include "AL_TreeNodeBinList.h"
#endif

#ifndef CXX_AL_STACKLIST_H
#include "AL_StackList.h"
#endif

///////////////////////////////////////////////////////////////////////////
//			AL_TreeBinList
///////////////////////////////////////////////////////////////////////////

template<typename T> 
class AL_TreeBinList
{
public:
	/**
	* Construction
	*
	* @param
	* @return
	* @note
	* @attention
	*/
	AL_TreeBinList();

	/**
	* Destruction
	*
	* @param
	* @return
	* @note
	* @attention 
	*/
	~AL_TreeBinList();

	/**
	* IsEmpty
	*
	* @param VOID
	* @return BOOL
	* @note the tree has data?
	* @attention
	*/
	BOOL IsEmpty() const;
	
	/**
	* GetRootNode
	*
	* @param
	* @return	const AL_TreeNodeBinList<T>*
	* @note Get the root data
	* @attention 
	*/
	const AL_TreeNodeBinList<T>* GetRootNode() const;

	/**
	* GetDegree
	*
	* @param
	* @return	DWORD
	* @note Degree of tree: a tree, the maximum degree of the node of the tree is called degree;
	* @attention 
	*/
	DWORD GetDegree() const;

	/**
	* GetHeight
	*
	* @param	
	* @return	DWORD
	* @note Height or depth of the tree: the maximum level of nodes in the tree;
	* @attention 
	*/
	DWORD GetHeight() const;

	/**
	* GetNodesNum
	*
	* @param
	* @return	DWORD
	* @note get the notes number of the tree 
	* @attention 
	*/
	DWORD GetNodesNum() const;

	/**
	* Clear
	*
	* @param
	* @return	
	* @note 
	* @attention 
	*/
	VOID Clear();

	/**
	* PreOrderTraversal
	*
	* @param	AL_ListSingle<T>& listOrder <OUT>
	* @return	BOOL
	* @note Pre-order traversal
	* @attention 
	*/
	BOOL PreOrderTraversal(AL_ListSingle<T>& listOrder) const;

	/**
	* InOrderTraversal
	*
	* @param	AL_ListSingle<T>& listOrder <OUT>
	* @return	BOOL
	* @note In-order traversal
	* @attention 
	*/
	BOOL InOrderTraversal(AL_ListSingle<T>& listOrder) const;

	/**
	* PostOrderTraversal
	*
	* @param	AL_ListSingle<T>& listOrder <OUT>
	* @return	BOOL
	* @note Post-order traversal
	* @attention 
	*/
	BOOL PostOrderTraversal(AL_ListSingle<T>& listOrder) const;

	/**
	* LevelOrderTraversal
	*
	* @param	AL_ListSingle<T>& listOrder <OUT>
	* @return	BOOL
	* @note Level-order traversal
	* @attention 
	*/
	BOOL LevelOrderTraversal(AL_ListSingle<T>& listOrder) const;

	/**
	* GetSiblingAtNode
	*
	* @param	AL_ListSingle<T>& listSibling <OUT>
	* @param	const AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
	* @return	BOOL
	* @note sibling nodes: nodes with the same parent node is called mutual sibling;
	* @attention the current tree node must be in the tree
	*/
	BOOL GetSiblingAtNode(AL_ListSingle<T>& listSibling, const AL_TreeNodeBinList<T>* pCurTreeNode) const;

	/**
	* GetAncestorAtNode
	*
	* @param	AL_ListSingle<T>& listAncestor <OUT>
	* @param	const AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
	* @return	BOOL
	* @note ancestor node: from the root to the node through all the nodes on the branch;
	* @attention the current tree node must be in the tree
	*/
	BOOL GetAncestorAtNode(AL_ListSingle<T>& listAncestor, const AL_TreeNodeBinList<T>* pCurTreeNode) const;

	/**
	* GetDescendantAtNode
	*
	* @param	AL_ListSingle<T>& listDescendant <OUT>
	* @param	const AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
	* @return	BOOL
	* @note ancestor node: from the root to the node through all the nodes on the branch;
	* @attention the current tree node must be in the tree
	*/
	BOOL GetDescendantAtNode(AL_ListSingle<T>& listDescendant, const AL_TreeNodeBinList<T>* pCurTreeNode) const;

	/**
	* InsertRoot
	*
	* @param	const T& tTemplate <IN> 
	* @return	BOOL
	* @note
	* @attention
	*/
	BOOL InsertRoot(const T& tTemplate);

	/**
	* InsertLeftAtNode
	*
	* @param	AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
	* @param	const T& tTemplate <IN> 
	* @return	BOOL
	* @note insert the tTemplate as child tree node to the current tree node (pCurTreeNode) at the position (left)
	* @attention  if NULL == pCurTreeNode, it will be insert as root tree node, the current tree node must be in the tree
	*/
	BOOL InsertLeftAtNode(AL_TreeNodeBinList<T>* pCurTreeNode, const T& tTemplate);

	/**
	* InsertRightAtNode
	*
	* @param	AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
	* @param	const T& tTemplate <IN> 
	* @return	BOOL
	* @note insert the tTemplate as child tree node to the current tree node (pCurTreeNode) at the position (right)
	* @attention  if NULL == pCurTreeNode, it will be insert as root tree node, the current tree node must be in the tree
	*/
	BOOL InsertRightAtNode(AL_TreeNodeBinList<T>* pCurTreeNode, const T& tTemplate);

	/**
	* RemoveNode
	*
	* @param	AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
	* @return	BOOL
	* @note 
	* @attention  the current tree node must be in the tree
	*/
	BOOL RemoveNode(AL_TreeNodeBinList<T>* pCurTreeNode);

	/**
	* GetChildNodeLeftAtNode
	*
	* @param	const AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
	* @return	const AL_TreeNodeBinList<T>*
	* @note get the current tree node (pCurTreeNode)'s child node at the position (left)
	* @attention the current tree node must be in the tree
	*/
	const AL_TreeNodeBinList<T>* GetChildNodeLeftAtNode(const AL_TreeNodeBinList<T>* pCurTreeNode) const;

	/**
	* GetChildNodeRightAtNode
	*
	* @param	const AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
	* @return	const AL_TreeNodeBinList<T>*
	* @note get the current tree node (pCurTreeNode)'s child node at the position (right)
	* @attention the current tree node must be in the tree
	*/
	const AL_TreeNodeBinList<T>*  GetChildNodeRightAtNode(const AL_TreeNodeBinList<T>* pCurTreeNode) const;

	/**
	* IsCompleteTreeBin
	*
	* @param
	* @return	BOOL
	* @note Is Complete Binary Tree
	* @attention If set binary height of h, the h layer in addition, the other layers (1 ~ h-1) has reached the maximum number of 
	             nodes, right to left, the h-layer node number of consecutive missing, this is a complete binary tree .
	*/
	BOOL  IsCompleteTreeBin() const;

	/**
	* IsFullTreeBin
	*
	* @param
	* @return	BOOL
	* @note Is Full Binary Tree
	* @attention A binary tree of height h is 2 ^ h-1 element is called a full binary tree.
	*/
	BOOL  IsFullTreeBin() const;

protected:
private:
	
	/**
	* InsertAtNode
	*
	* @param	AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
	* @param	DWORD dwIndex <IN>
	* @param	const T& tTemplate <IN> 
	* @return	BOOL
	* @note insert the tTemplate as child tree node to the current tree node (pCurTreeNode) at the position (dwIndex)
	* @attention if NULL == pCurTreeNode, it will be insert as root tree node, the current tree node must be in the tree
	*/
	BOOL InsertAtNode(AL_TreeNodeBinList<T>* pCurTreeNode, DWORD dwIndex, const T& tTemplate);

	/**
	* PreOrderTraversal
	*
	* @param	const AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
	* @param	AL_ListSingle<T>& listOrder <OUT>
	* @return	VOID
	* @note Pre-order traversal
	* @attention Recursion Traversal
	*/
	VOID PreOrderTraversal(const AL_TreeNodeBinList<T>* pCurTreeNode, AL_ListSingle<T>& listOrder) const;

	/**
	* InOrderTraversal
	*
	* @param	const AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
	* @param	AL_ListSingle<T>& listOrder <OUT>
	* @return	VOID
	* @note In-order traversal
	* @attention Recursion Traversal
	*/
	VOID InOrderTraversal(const AL_TreeNodeBinList<T>* pCurTreeNode, AL_ListSingle<T>& listOrder) const;

	/**
	* PostOrderTraversal
	*
	* @param	const AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
	* @param	AL_ListSingle<T>& listOrder <OUT>
	* @return	VOID
	* @note Post-order traversal
	* @attention Recursion Traversal
	*/
	VOID PostOrderTraversal(const AL_TreeNodeBinList<T>* pCurTreeNode, AL_ListSingle<T>& listOrder) const;
	
	/**
	*Copy Construct
	*
	* @param	const AL_TreeBinList<T>& cAL_TreeBinList
	* @return
	*/
	AL_TreeBinList(const AL_TreeBinList<T>& cAL_TreeBinList);

	/**
	*Assignment
	*
	* @param	const AL_TreeBinList<T>& cAL_TreeBinList
	* @return	AL_TreeBinList<T>&
	*/
	AL_TreeBinList<T>& operator = (const AL_TreeBinList<T>& cAL_TreeBinList);

public:
protected:
private:
	DWORD								m_dwDegree;
	DWORD								m_dwHeight;
	DWORD								m_dwNumNodes;
	AL_TreeNodeBinList<T>*				m_pRootNode;
};

///////////////////////////////////////////////////////////////////////////
//			AL_TreeBinList
///////////////////////////////////////////////////////////////////////////

/**
* Construction
*
* @param
* @return
* @note
* @attention
*/
template<typename T> 
AL_TreeBinList<T>::AL_TreeBinList():
m_dwDegree(0xffffffff),
m_dwHeight(0x00),
m_dwNumNodes(0x00),
m_pRootNode(NULL)
{

}

/**
* Destruction
*
* @param
* @return
* @note
* @attention 
*/
template<typename T> 
AL_TreeBinList<T>::~AL_TreeBinList()
{
	Clear();
}

/**
* IsEmpty
*
* @param VOID
* @return BOOL
* @note the tree has data?
* @attention
*/
template<typename T> BOOL 
AL_TreeBinList<T>::IsEmpty() const
{
	return (0x00 == m_dwNumNodes) ? TRUE:FALSE;
}

/**
* GetRootNode
*
* @param
* @return	const AL_TreeNodeBinList<T>*
* @note Get the root data
* @attention 
*/
template<typename T> const AL_TreeNodeBinList<T>* 
AL_TreeBinList<T>::GetRootNode() const
{
	return m_pRootNode;
}

/**
* GetDegree
*
* @param
* @return	DWORD
* @note Degree of tree: a tree, the maximum degree of the node of the tree is called degree;
* @attention 
*/
template<typename T> DWORD 
AL_TreeBinList<T>::GetDegree() const
{
	return m_dwDegree;
}

/**
* GetHeight
*
* @param	
* @return	DWORD
* @note Height or depth of the tree: the maximum level of nodes in the tree;
* @attention 
*/
template<typename T> DWORD 
AL_TreeBinList<T>::GetHeight() const
{
	return m_dwHeight;
}

/**
* GetNodesNum
*
* @param
* @return	DWORD
* @note get the notes number of the tree 
* @attention 
*/
template<typename T> DWORD 
AL_TreeBinList<T>::GetNodesNum() const
{
	return m_dwNumNodes;
}

/**
* Clear
*
* @param
* @return	
* @note 
* @attention 
*/
template<typename T> VOID 
AL_TreeBinList<T>::Clear()
{
	m_dwDegree = 0xffffffff;
	m_dwHeight = 0x00;
	m_dwNumNodes = 0x00;

	AL_ListSingle<AL_TreeNodeBinList<T>*> listDescendant;
	if (NULL != m_pRootNode) {
		if (TRUE == m_pRootNode->GetDescendant(listDescendant)) {
			AL_TreeNodeBinList<T>* pDescendant;
			for (DWORD dwDelete=0; dwDelete<listDescendant.Length(); dwDelete++) {
				if (TRUE == listDescendant.Get(pDescendant, dwDelete)) {
					if (NULL != pDescendant) {
						delete pDescendant;
						pDescendant = NULL;
					}
				}
			}
		}
	}
	delete m_pRootNode;
	m_pRootNode = NULL;
}

/**
* PreOrderTraversal
*
* @param	AL_ListSingle<T>& listOrder <OUT>
* @return	BOOL
* @note Pre-order traversal
* @attention 
*/
template<typename T> BOOL 
AL_TreeBinList<T>::PreOrderTraversal(AL_ListSingle<T>& listOrder) const
{
	if (NULL == m_pRootNode) {
		return FALSE;
	}

	listOrder.Clear();

	//Recursion Traversal
	PreOrderTraversal(m_pRootNode, listOrder);
	return TRUE;
	
	//Not Recursion Traversal
	AL_StackList<AL_TreeNodeBinList<T>*> cStack;
	AL_TreeNodeBinList<T>* pTreeNode = m_pRootNode;

	while (TRUE != cStack.IsEmpty() || NULL != pTreeNode) {
		while (NULL != pTreeNode) {
			listOrder.InsertEnd(pTreeNode->GetData());
			if (NULL != pTreeNode->GetChildRight()) {
				//push the child right to stack
				cStack.Push(pTreeNode->GetChildRight());
			}
			pTreeNode = pTreeNode->GetChildLeft();
		}

		if (TRUE == cStack.Pop(pTreeNode)) {
			if (NULL == pTreeNode) {
				return FALSE;
			}
		}
		else {
			return FALSE;
		}
		
	}
	return TRUE;
}

/**
* InOrderTraversal
*
* @param	AL_ListSingle<T>& listOrder <OUT>
* @return	BOOL
* @note In-order traversal
* @attention 
*/
template<typename T> BOOL 
AL_TreeBinList<T>::InOrderTraversal(AL_ListSingle<T>& listOrder) const
{
	if (NULL == m_pRootNode) {
		return FALSE;
	}

	listOrder.Clear();
	
	//Recursion Traversal
	InOrderTraversal(m_pRootNode, listOrder);
	return TRUE;

	//Not Recursion Traversal
	AL_StackList<AL_TreeNodeBinList<T>*> cStack;
	AL_TreeNodeBinList<T>* pTreeNode = m_pRootNode;

	while (TRUE != cStack.IsEmpty() || NULL != pTreeNode) {
		while (NULL != pTreeNode) {
			cStack.Push(pTreeNode);
			pTreeNode = pTreeNode->GetChildLeft();
		}

		if (TRUE == cStack.Pop(pTreeNode)) {
			if (NULL !=  pTreeNode) {
				listOrder.InsertEnd(pTreeNode->GetData());
				if (NULL != pTreeNode->GetChildRight()){
					//child right exist, push the node, and loop it's left child to push
					pTreeNode = pTreeNode->GetChildRight();
				}
				else {
					//to pop the node in the stack
					pTreeNode = NULL;
				}
			}
			else {
				return FALSE;
			}
		}
		else {
			return FALSE;
		}
	}

	return TRUE;
}

/**
* PostOrderTraversal
*
* @param	AL_ListSingle<T>& listOrder <OUT>
* @return	BOOL
* @note Post-order traversal
* @attention 
*/
template<typename T> BOOL 
AL_TreeBinList<T>::PostOrderTraversal(AL_ListSingle<T>& listOrder) const
{
	if (NULL == m_pRootNode) {
		return FALSE;
	}

	listOrder.Clear();

	//Recursion Traversal
	PostOrderTraversal(m_pRootNode, listOrder);
	return TRUE;

	//Not Recursion Traversal
	AL_StackList<AL_TreeNodeBinList<T>*> cStack;
	AL_TreeNodeBinList<T>* pTreeNode = m_pRootNode;
	AL_StackList<AL_TreeNodeBinList<T>*> cStackReturn;
	AL_TreeNodeBinList<T>* pTreeNodeReturn = NULL;

	while (TRUE != cStack.IsEmpty() || NULL != pTreeNode) {
		while (NULL != pTreeNode) {
			cStack.Push(pTreeNode);
			if (NULL != pTreeNode->GetChildLeft()) {
				pTreeNode = pTreeNode->GetChildLeft();
			}
			else {
				//has not left child, get the right child
				pTreeNode = pTreeNode->GetChildRight();
			}
		}

		if (TRUE == cStack.Pop(pTreeNode)) {
			if (NULL !=  pTreeNode) {
				listOrder.InsertEnd(pTreeNode->GetData());
				if (NULL != pTreeNode->GetChildLeft() && NULL != pTreeNode->GetChildRight()){
					//child right exist
					cStackReturn.Top(pTreeNodeReturn);
					if (pTreeNodeReturn != pTreeNode) {
						listOrder.RemoveAt(listOrder.Length()-1);
						cStack.Push(pTreeNode);
						cStackReturn.Push(pTreeNode);
						pTreeNode = pTreeNode->GetChildRight();
					}
					else {
						//to pop the node in the stack
						cStackReturn.Pop(pTreeNodeReturn);
						pTreeNode = NULL;
					}
				}
				else {
					//to pop the node in the stack
					pTreeNode = NULL;
				}
			}
			else {
				return FALSE;
			}
		}
		else {
			return FALSE;
		}
	}

	return TRUE;
}

/**
* LevelOrderTraversal
*
* @param	AL_ListSingle<T>& listOrder <OUT>
* @return	BOOL
* @note Level-order traversal
* @attention 
*/
template<typename T> BOOL 
AL_TreeBinList<T>::LevelOrderTraversal(AL_ListSingle<T>& listOrder) const
{
	if (TRUE == IsEmpty()) {
		return FALSE;
	}

	if (NULL == m_pRootNode) {
		return FALSE;
	}
	listOrder.Clear();
	/*
	AL_ListSingle<AL_TreeNodeBinList<T>*> listNodeOrder;
	listNodeOrder.InsertEnd(m_pRootNode);
	//loop the all node
	DWORD dwNodeOrderLoop = 0x00;
	AL_TreeNodeBinList<T>* pNodeOrderLoop = NULL;
	AL_TreeNodeBinList<T>* pNodeOrderChild = NULL;
	while (TRUE == listNodeOrder.Get(pNodeOrderLoop, dwNodeOrderLoop)) {
		dwNodeOrderLoop++;
		if (NULL != pNodeOrderLoop) {
			listOrder.InsertEnd(pNodeOrderLoop->GetData());
			pNodeOrderChild = pNodeOrderLoop->GetChildLeft();
			if (NULL != pNodeOrderChild) {
				queueOrder.Push(pNodeOrderChild);
			}
			pNodeOrderChild = pNodeOrderLoop->GetChildRight();
			if (NULL != pNodeOrderChild) {
				queueOrder.Push(pNodeOrderChild);
			}
		}
		else {
			//error
			return FALSE;
		}
	}
	return TRUE;
	*/
	
	AL_QueueList<AL_TreeNodeBinList<T>*> queueOrder;
	queueOrder.Push(m_pRootNode);
	
	AL_TreeNodeBinList<T>* pNodeOrderLoop = NULL;
	AL_TreeNodeBinList<T>* pNodeOrderChild = NULL;
	while (FALSE == queueOrder.IsEmpty()) {
		if (TRUE == queueOrder.Pop(pNodeOrderLoop)) {
			if (NULL != pNodeOrderLoop) {
				listOrder.InsertEnd(pNodeOrderLoop->GetData()); 
				pNodeOrderChild = pNodeOrderLoop->GetChildLeft();
				if (NULL != pNodeOrderChild) {
					queueOrder.Push(pNodeOrderChild);
				}
				pNodeOrderChild = pNodeOrderLoop->GetChildRight();
				if (NULL != pNodeOrderChild) {
					queueOrder.Push(pNodeOrderChild);
				}
			}
			else {
				return FALSE;
			}
		}
		else {
			return FALSE;
		}
	}
	return TRUE;
}

/**
* GetSiblingAtNode
*
* @param	AL_ListSingle<T>& listSibling <OUT>
* @param	const AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
* @return	BOOL
* @note sibling nodes: nodes with the same parent node is called mutual sibling;
* @attention the current tree node must be in the tree
*/
template<typename T> BOOL 
AL_TreeBinList<T>::GetSiblingAtNode(AL_ListSingle<T>& listSibling, const AL_TreeNodeBinList<T>* pCurTreeNode) const
{
	if (NULL == pCurTreeNode) {
		return FALSE;
	}

	AL_ListSingle<AL_TreeNodeBinList<T>*> listTreeNodeSibling;
	if (FALSE == pCurTreeNode->GetSibling(listTreeNodeSibling)) {
		return FALSE;
	}
	//clear listSibling 
	listSibling.Clear();
	AL_TreeNodeBinList<T>* pTreeNodeSibling = NULL;
	for (DWORD dwCnt=0; dwCnt<listTreeNodeSibling.Length(); dwCnt++) {
		if (TRUE == listTreeNodeSibling.Get(pTreeNodeSibling, dwCnt)) {
			if (NULL != pTreeNodeSibling) {
				//inset the data to listSibling
				listSibling.InsertEnd(pTreeNodeSibling->GetData());
			}
			else {
				//error
				return FALSE;
			}
		}
		else {
			//error
			return FALSE;
		}
	}
	return TRUE;
}

/**
* GetAncestorAtNode
*
* @param	AL_ListSingle<T>& listAncestor <OUT>
* @param	const AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
* @return	BOOL
* @note ancestor node: from the root to the node through all the nodes on the branch;
* @attention the current tree node must be in the tree
*/
template<typename T> BOOL 
AL_TreeBinList<T>::GetAncestorAtNode(AL_ListSingle<T>& listAncestor, const AL_TreeNodeBinList<T>* pCurTreeNode) const
{
	if (NULL == pCurTreeNode) {
		return FALSE;
	}

	AL_ListSingle<AL_TreeNodeBinList<T>*> listTreeNodeAncestor;
	if (FALSE == pCurTreeNode->GetAncestor(listTreeNodeAncestor)) {
		return FALSE;
	}
	//clear listAncestor 
	listAncestor.Clear();
	AL_TreeNodeBinList<T>* pTreeNodeAncestor = NULL;
	for (DWORD dwCnt=0; dwCnt<listTreeNodeAncestor.Length(); dwCnt++) {
		if (TRUE == listTreeNodeAncestor.Get(pTreeNodeAncestor, dwCnt)) {
			if (NULL != pTreeNodeAncestor) {
				//inset the data to listSibling
				listAncestor.InsertEnd(pTreeNodeAncestor->GetData());
			}
			else {
				//error
				return FALSE;
			}
		}
		else {
			//error
			return FALSE;
		}
	}
	return TRUE;
}

/**
* GetDescendantAtNode
*
* @param	AL_ListSingle<T>& listDescendant <OUT>
* @param	const AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
* @return	BOOL
* @note ancestor node: from the root to the node through all the nodes on the branch;
* @attention the current tree node must be in the tree
*/
template<typename T> BOOL 
AL_TreeBinList<T>::GetDescendantAtNode(AL_ListSingle<T>& listDescendant, const AL_TreeNodeBinList<T>* pCurTreeNode) const
{
	if (NULL == pCurTreeNode) {
		return FALSE;
	}

	AL_ListSingle<AL_TreeNodeBinList<T>*> listTreeNodeDescendant;
	if (FALSE == pCurTreeNode->GetDescendant(listTreeNodeDescendant)) {
		return FALSE;
	}
	//clear listAncestor 
	listDescendant.Clear();
	AL_TreeNodeBinList<T>* pTreeNodeDescendant = NULL;
	for (DWORD dwCnt=0; dwCnt<listTreeNodeDescendant.Length(); dwCnt++) {
		if (TRUE == listTreeNodeDescendant.Get(pTreeNodeDescendant, dwCnt)) {
			if (NULL != pTreeNodeDescendant) {
				//inset the data to listSibling
				listDescendant.InsertEnd(pTreeNodeDescendant->GetData());
			}
			else {
				//error
				return FALSE;
			}
		}
		else {
			//error
			return FALSE;
		}
	}
	return TRUE;
}

/**
* InsertRoot
*
* @param	const T& tTemplate <IN> 
* @return	BOOL
* @note
* @attention
*/
template<typename T> BOOL 
AL_TreeBinList<T>::InsertRoot(const T& tTemplate)
{
	return InsertAtNode(NULL, 0x00, tTemplate);
}

/**
* InsertLeftAtNode
*
* @param	AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
* @param	const T& tTemplate <IN> 
* @return	BOOL
* @note insert the tTemplate as child tree node to the current tree node (pCurTreeNode) at the position (left)
* @attention  if NULL == pCurTreeNode, it will be insert as root tree node, the current tree node must be in the tree
*/
template<typename T> BOOL 
AL_TreeBinList<T>::InsertLeftAtNode(AL_TreeNodeBinList<T>* pCurTreeNode, const T& tTemplate)
{
	return InsertAtNode(pCurTreeNode, 0x00, tTemplate);
}

/**
* InsertRightAtNode
*
* @param	AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
* @param	const T& tTemplate <IN> 
* @return	BOOL
* @note insert the tTemplate as child tree node to the current tree node (pCurTreeNode) at the position (right)
* @attention  if NULL == pCurTreeNode, it will be insert as root tree node, the current tree node must be in the tree
*/
template<typename T> BOOL 
AL_TreeBinList<T>::InsertRightAtNode(AL_TreeNodeBinList<T>* pCurTreeNode, const T& tTemplate)
{
	return InsertAtNode(pCurTreeNode, 0x01, tTemplate);
}

/**
* RemoveNode
*
* @param	AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
* @return	BOOL
* @note 
* @attention  the current tree node must be in the tree
*/
template<typename T> BOOL
AL_TreeBinList<T>::RemoveNode(AL_TreeNodeBinList<T>* pCurTreeNode)
{
	if (NULL == pCurTreeNode) {
		return FALSE;
	}

	AL_ListSingle<AL_TreeNodeBinList<T>*> listTreeNodeDescendant;
	if (FALSE == pCurTreeNode->GetDescendant(listTreeNodeDescendant)) {
		return FALSE;
	}

	AL_TreeNodeBinList<T>* pTreeNodeDescendant = NULL;
	for (DWORD dwRemoveCnt=0; dwRemoveCnt<listTreeNodeDescendant.Length(); dwRemoveCnt++) {
		if (TRUE == listTreeNodeDescendant.Get(pTreeNodeDescendant, dwRemoveCnt)) {
			if (NULL != pTreeNodeDescendant) {
				//delete it
				delete pTreeNodeDescendant;
				pTreeNodeDescendant = NULL;
			}
			else {
				//error
				return FALSE;
			}
		}
		else {
			//error
			return FALSE;
		}
	}
	AL_TreeNodeBinList<T>* pNodeParent = pCurTreeNode->GetParent();
	if (NULL == pNodeParent && m_pRootNode != pNodeParent) {
		//not root node and has no parent node
		return FALSE;
	}
	pNodeParent->Remove(pCurTreeNode);
	delete pCurTreeNode;
	pCurTreeNode = NULL;
	m_dwNumNodes -= (listTreeNodeDescendant.Length() + 1);

	//loop all the node
	listTreeNodeDescendant.Clear();
	if (FALSE == m_pRootNode->GetDescendant(listTreeNodeDescendant)) {
		return FALSE;
	}

	m_dwDegree = m_pRootNode->GetDegree();
	m_dwHeight = m_pRootNode->GetLevel();
	for (DWORD dwLoopCnt=0; dwLoopCnt<listTreeNodeDescendant.Length(); dwLoopCnt++) {
		if (TRUE == listTreeNodeDescendant.Get(pTreeNodeDescendant, dwLoopCnt)) {
			if (NULL != pTreeNodeDescendant) {
				if (m_dwDegree < pTreeNodeDescendant->GetDegree()) {
					m_dwDegree = pTreeNodeDescendant->GetDegree();
				}
				if (m_dwHeight < pTreeNodeDescendant->GetLevel()) {
					m_dwHeight = pTreeNodeDescendant->GetLevel();
				}
			}
			else {
				//error
				return FALSE;
			}
		}
		else {
			//error
			return FALSE;
		}
	}			

	return TRUE;
}

/**
* GetChildNodeLeftAtNode
*
* @param	const AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
* @return	const AL_TreeNodeBinList<T>*
* @note get the current tree node (pCurTreeNode)'s child node at the position (left)
* @attention the current tree node must be in the tree
*/
template<typename T> const AL_TreeNodeBinList<T>* 
AL_TreeBinList<T>::GetChildNodeLeftAtNode(const AL_TreeNodeBinList<T>* pCurTreeNode) const
{
	if (NULL == pCurTreeNode) {
		return FALSE;
	}
	return pCurTreeNode->GetChildLeft();
}

/**
* GetChildNodeRightAtNode
*
* @param	const AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
* @return	const AL_TreeNodeBinList<T>*
* @note get the current tree node (pCurTreeNode)'s child node at the position (right)
* @attention
*/
template<typename T> const AL_TreeNodeBinList<T>* 
AL_TreeBinList<T>::GetChildNodeRightAtNode(const AL_TreeNodeBinList<T>* pCurTreeNode) const
{
	if (NULL == pCurTreeNode) {
		return FALSE;
	}
	return pCurTreeNode->GetChildRight();
}

/**
* IsCompleteTreeBin
*
* @param
* @return	BOOL
* @note Is Complete Binary Tree
* @attention If set binary height of h, the h layer in addition, the other layers (1 ~ h-1) has reached the maximum number of 
             nodes, right to left, the h-layer node number of consecutive missing, this is a complete binary tree .
*/
template<typename T> BOOL 
AL_TreeBinList<T>::IsCompleteTreeBin() const
{
	if (TRUE == IsEmpty()) {
		return FALSE;
	}
	if (NULL == m_pRootNode) {
		return FALSE;
	}
	
	AL_TreeNodeBinList<T>* pTreeNode;
	AL_ListSingle<AL_TreeNodeBinList<T>*>& listDescendant;
	m_pRootNode->GetDescendant(listDescendant);
	BOOL bMissing = FALSE;
	for (DWORD dwCnt=0x00; dwCnt<listDescendant->Length(); dwCnt++) {
		if (TRUE ==  listDescendant.Get(pTreeNode, dwCnt)) {
			if (NULL != pTreeNode) {
				if (m_dwHeight > pTreeNode->GetLevel()) {
					//the other layers (1 ~ h-1)
					if (NULL == pTreeNode->GetChildLeft() || NULL == pTreeNode->GetChildRight()) {
						//left or right child not exist!
						return FALSE
					}
				}
				else {
					//the h-layer
					if (TRUE == bMissing) {
						//node number of consecutive missing
						if (NULL == pTreeNode->GetChildLeft() || NULL == pTreeNode->GetChildRight()) {
							//left or right child not exist!
							return FALSE
						}
					}

					if (NULL == pTreeNode->GetChildLeft()) {
						//left child not exist!
						bMissing = TRUE;
						if (NULL != pTreeNode->GetChildRight()) {
							//right child exist!
							return FALSE;
						}
					}
					else {
						//left child exist!
						if (NULL == pTreeNode->GetChildRight()) {
							//right child not exist!
							bMissing = TRUE;
						}
					}
				}
			}
			else {
				return FALSE;
			}
		}
		else {
			return FALSE;
		}
	}

	return TRUE;
}

/**
* IsFullTreeBin
*
* @param
* @return	BOOL
* @note Is Full Binary Tree
* @attention A binary tree of height h is 2 ^ h-1 element is called a full binary tree.
*/
template<typename T> BOOL 
AL_TreeBinList<T>::IsFullTreeBin() const
{
	if (TRUE == IsEmpty()) {
		return FALSE;
	}

	DWORD dwTwo = 2;
	DWORD dwFullTreeBinNum = 1;
	for (DWORD dwFull=0x00; dwFull<GetHeight(); dwFull++) {
		dwFullTreeBinNum *= 2;
	}
	dwFullTreeBinNum -= 1;

	return (dwFullTreeBinNum == GetNodesNum())  ? TRUE:FALSE;
}

/**
* InsertAtNode
*
* @param	AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
* @param	DWORD dwIndex <IN>
* @param	const T& tTemplate <IN> 
* @return	BOOL
* @note insert the tTemplate as child tree node to the current tree node (pCurTreeNode) at the position (dwIndex)
* @attention if NULL == pCurTreeNode, it will be insert as root tree node, the current tree node must be in the tree
*/
template<typename T> BOOL 
AL_TreeBinList<T>::InsertAtNode(AL_TreeNodeBinList<T>* pCurTreeNode, DWORD dwIndex, const T& tTemplate)
{
	AL_TreeNodeBinList<T>* pTreeNode = NULL;
	if (TRUE == IsEmpty()) {
		if (NULL != pCurTreeNode) {
			//error can not insert to the current node pCurTreeNode, is not exist in the tree
			return FALSE;
		}
		else {
			pTreeNode = new AL_TreeNodeBinList<T>;
			if (NULL ==  pTreeNode) {
				return FALSE;
			}
			pTreeNode->SetData(tTemplate);
			pTreeNode->SetLevel(0x00);

			m_pRootNode = pTreeNode;
			m_dwDegree = 0x00;
			m_dwHeight = 0x00;			//empty tree 0xffffffff (-1)
			m_dwNumNodes++;
			return TRUE;
		}
	}

	if (NULL == pCurTreeNode) {
		return FALSE;
	}

	//inset to the current tree node
	pTreeNode = new AL_TreeNodeBinList<T>;
	if (NULL ==  pTreeNode) {
		return FALSE;
	}
	pTreeNode->SetData(tTemplate);
	pTreeNode->SetLevel(pCurTreeNode->GetLevel() + 1);

	if (FALSE ==  pCurTreeNode->Insert(dwIndex, pTreeNode)) {
		delete pTreeNode;
		pTreeNode = NULL;
		return FALSE;
	}

	DWORD dwCurNodeDegree = 0x00;
	//loop all node to get the current node degree
	if (pCurTreeNode->GetDegree() > m_dwDegree) {
		m_dwDegree = pCurTreeNode->GetDegree();
	}

	if (pTreeNode->GetLevel() > m_dwHeight) {
		m_dwHeight =pTreeNode->GetLevel();
	}
	m_dwNumNodes++;

	return TRUE;
}

/**
* PreOrderTraversal
*
* @param	const AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
* @param	AL_ListSingle<T>& listOrder <OUT>
* @return	VOID
* @note Pre-order traversal
* @attention Recursion Traversal
*/
template<typename T> VOID 
AL_TreeBinList<T>::PreOrderTraversal(const AL_TreeNodeBinList<T>* pCurTreeNode, AL_ListSingle<T>& listOrder) const
{
	if (NULL == pCurTreeNode) {
		return;
	}
	//Do Something with root
	listOrder.InsertEnd(pCurTreeNode->GetData());

	if(NULL != pCurTreeNode->GetChildLeft()) {
		PreOrderTraversal(pCurTreeNode->GetChildLeft(), listOrder);
	}

	if(NULL != pCurTreeNode->GetChildRight()) {
		PreOrderTraversal(pCurTreeNode->GetChildRight(), listOrder);
	}
}

/**
* InOrderTraversal
*
* @param	const AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
* @param	AL_ListSingle<T>& listOrder <OUT>
* @return	VOID
* @note In-order traversal
* @attention Recursion Traversal
*/
template<typename T> VOID 
AL_TreeBinList<T>::InOrderTraversal(const AL_TreeNodeBinList<T>* pCurTreeNode, AL_ListSingle<T>& listOrder) const
{
	if (NULL == pCurTreeNode) {
		return;
	}
	
	if(NULL != pCurTreeNode->GetChildLeft()) {
		InOrderTraversal(pCurTreeNode->GetChildLeft(), listOrder);
	}

	//Do Something with root
	listOrder.InsertEnd(pCurTreeNode->GetData());

	if(NULL != pCurTreeNode->GetChildRight()) {
		InOrderTraversal(pCurTreeNode->GetChildRight(), listOrder);
	}
}

/**
* PostOrderTraversal
*
* @param	const AL_TreeNodeBinList<T>* pCurTreeNode <IN>	
* @param	AL_ListSingle<T>& listOrder <OUT>
* @return	VOID
* @note Post-order traversal
* @attention Recursion Traversal
*/
template<typename T> VOID 
AL_TreeBinList<T>::PostOrderTraversal(const AL_TreeNodeBinList<T>* pCurTreeNode, AL_ListSingle<T>& listOrder) const
{
	if (NULL == pCurTreeNode) {
		return;
	}

	if(NULL != pCurTreeNode->GetChildLeft()) {
		PostOrderTraversal(pCurTreeNode->GetChildLeft(), listOrder);
	}

	if(NULL != pCurTreeNode->GetChildRight()) {
		PostOrderTraversal(pCurTreeNode->GetChildRight(), listOrder);
	}

	//Do Something with root
	listOrder.InsertEnd(pCurTreeNode->GetData());
}

#endif // CXX_AL_TREEBINLIST_H
/* EOF */


测试代码

#ifdef TEST_AL_TREEBINLIST
	AL_TreeBinList<DWORD> cTreeBinList;
	BOOL bEmpty = cTreeBinList.IsEmpty();
	std::cout<<bEmpty<<std::endl;
	const AL_TreeNodeBinList<DWORD>* pConstRootNode = cTreeBinList.GetRootNode();
	AL_TreeNodeBinList<DWORD>* pRootNode = const_cast<AL_TreeNodeBinList<DWORD>*>(pConstRootNode);
	std::cout<<pRootNode<<std::endl;
	DWORD dwDegree = cTreeBinList.GetDegree();
	std::cout<<dwDegree<<std::endl;
	DWORD dwHeight = cTreeBinList.GetHeight();
	std::cout<<dwHeight<<std::endl;
	DWORD dwNodesNum = cTreeBinList.GetNodesNum();
	std::cout<<dwNodesNum<<std::endl;

	cTreeBinList.InsertRoot(0);
	pConstRootNode = cTreeBinList.GetRootNode();
	pRootNode = const_cast<AL_TreeNodeBinList<DWORD>*>(pConstRootNode);
	std::cout<<pRootNode<<std::endl;

	cTreeBinList.InsertLeftAtNode(pRootNode, 10);

	const AL_TreeNodeBinList<DWORD>* pConstTreeNode = cTreeBinList.GetChildNodeLeftAtNode(pRootNode);
	AL_TreeNodeBinList<DWORD>* pTreeNode = const_cast<AL_TreeNodeBinList<DWORD>*>(pConstTreeNode);
	std::cout<<pTreeNode<<std::endl;

	cTreeBinList.InsertLeftAtNode(pTreeNode, 20);
	cTreeBinList.InsertRightAtNode(pTreeNode, 21);

	const AL_TreeNodeBinList<DWORD>* pConstTreeNode20 = cTreeBinList.GetChildNodeLeftAtNode(pTreeNode);
	AL_TreeNodeBinList<DWORD>* pTreeNode20 = const_cast<AL_TreeNodeBinList<DWORD>*>(pConstTreeNode20);
	std::cout<<pTreeNode<<std::endl;

	cTreeBinList.InsertLeftAtNode(pTreeNode20, 30);
	cTreeBinList.InsertRightAtNode(pTreeNode20, 31);

	const AL_TreeNodeBinList<DWORD>* pConstTreeNode31 = cTreeBinList.GetChildNodeRightAtNode(pConstTreeNode20);
	AL_TreeNodeBinList<DWORD>* pTreeNode31 = const_cast<AL_TreeNodeBinList<DWORD>*>(pConstTreeNode31);
	cTreeBinList.InsertLeftAtNode(pTreeNode31, 40);
	cTreeBinList.InsertRightAtNode(pTreeNode31, 41);

	const AL_TreeNodeBinList<DWORD>* pConstTreeNode30 = cTreeBinList.GetChildNodeLeftAtNode(pConstTreeNode20);
	AL_TreeNodeBinList<DWORD>* pTreeNode30 = const_cast<AL_TreeNodeBinList<DWORD>*>(pConstTreeNode30);
	cTreeBinList.InsertRightAtNode(pTreeNode30, 999);

	const AL_TreeNodeBinList<DWORD>* pConstTreeNode999 = cTreeBinList.GetChildNodeRightAtNode(pConstTreeNode30);
	AL_TreeNodeBinList<DWORD>* pTreeNode999 = const_cast<AL_TreeNodeBinList<DWORD>*>(pConstTreeNode999);
	cTreeBinList.InsertLeftAtNode(pTreeNode999, 888);

	const AL_TreeNodeBinList<DWORD>* pConstTreeNode41 = cTreeBinList.GetChildNodeRightAtNode(pConstTreeNode31);
	AL_TreeNodeBinList<DWORD>* pTreeNode41 = const_cast<AL_TreeNodeBinList<DWORD>*>(pConstTreeNode41);
	cTreeBinList.InsertRightAtNode(pTreeNode41, 52);

	const AL_TreeNodeBinList<DWORD>* pConstTreeNode33 = cTreeBinList.GetChildNodeRightAtNode(pTreeNode20);
	AL_TreeNodeBinList<DWORD>* pTreeNode33 = const_cast<AL_TreeNodeBinList<DWORD>*>(pConstTreeNode33);

	if (NULL != pTreeNode) {
		std::cout<<pTreeNode->GetLevel()<<"    "<<pTreeNode->GetData()<<"    "<<pTreeNode->GetDegree()<<std::endl;
		std::cout<<pTreeNode->IsLeaf()<<"    "<<pTreeNode->IsBranch()<<"    "<<pTreeNode->IsParent(pTreeNode)<<"    "<<pTreeNode->IsParent(pTreeNode33)<<std::endl;
	}
	if (NULL != pTreeNode20) {
		std::cout<<pTreeNode20->GetLevel()<<"    "<<pTreeNode20->GetData()<<"    "<<pTreeNode20->GetDegree()<<std::endl;
		std::cout<<pTreeNode20->IsLeaf()<<"    "<<pTreeNode20->IsBranch()<<"    "<<pTreeNode20->IsParent(pTreeNode)<<"    "<<pTreeNode20->IsParent(pTreeNode33)<<std::endl;
	}
	if (NULL != pTreeNode33) {
		std::cout<<pTreeNode33->GetLevel()<<"    "<<pTreeNode33->GetData()<<"    "<<pTreeNode33->GetDegree()<<std::endl;
		std::cout<<pTreeNode33->IsLeaf()<<"    "<<pTreeNode33->IsBranch()<<"    "<<pTreeNode33->IsParent(pTreeNode)<<"    "<<pTreeNode33->IsParent(pTreeNode33)<<std::endl;
	}

	const AL_TreeNodeBinList<DWORD>*	pChild = NULL;
	pChild = cTreeBinList.GetChildNodeRightAtNode(pTreeNode);
	if (NULL != pChild) {
		std::cout<<pChild->GetLevel()<<"    "<<pChild->GetData()<<"    "<<pChild->GetDegree()<<std::endl;
		std::cout<<pChild->IsLeaf()<<"    "<<pChild->IsBranch()<<"    "<<pChild->IsParent(pTreeNode)<<"    "<<pChild->IsParent(pTreeNode33)<<std::endl;
	}
	pChild = cTreeBinList.GetChildNodeLeftAtNode(pTreeNode);
	if (NULL != pChild) {
		std::cout<<pChild->GetLevel()<<"    "<<pChild->GetData()<<"    "<<pChild->GetDegree()<<std::endl;
		std::cout<<pChild->IsLeaf()<<"    "<<pChild->IsBranch()<<"    "<<pChild->IsParent(pTreeNode)<<"    "<<pChild->IsParent(pTreeNode33)<<std::endl;
	}
	pChild = cTreeBinList.GetChildNodeLeftAtNode(pTreeNode);
	if (NULL != pChild) {
		std::cout<<pChild->GetLevel()<<"    "<<pChild->GetData()<<"    "<<pChild->GetDegree()<<std::endl;
		std::cout<<pChild->IsLeaf()<<"    "<<pChild->IsBranch()<<"    "<<pChild->IsParent(pTreeNode)<<"    "<<pChild->IsParent(pTreeNode33)<<std::endl;
	}
	pChild = cTreeBinList.GetChildNodeRightAtNode(pTreeNode);
	if (NULL != pChild) {
		std::cout<<pChild->GetLevel()<<"    "<<pChild->GetData()<<"    "<<pChild->GetDegree()<<std::endl;
		std::cout<<pChild->IsLeaf()<<"    "<<pChild->IsBranch()<<"    "<<pChild->IsParent(pTreeNode)<<"    "<<pChild->IsParent(pTreeNode33)<<std::endl;
	}
	pChild = cTreeBinList.GetChildNodeRightAtNode(pTreeNode);
	if (NULL != pChild) {
		std::cout<<pChild->GetLevel()<<"    "<<pChild->GetData()<<"    "<<pChild->GetDegree()<<std::endl;
		std::cout<<pChild->IsLeaf()<<"    "<<pChild->IsBranch()<<"    "<<pChild->IsParent(pTreeNode)<<"    "<<pChild->IsParent(pTreeNode33)<<std::endl;
	}

	bEmpty = cTreeBinList.IsEmpty();
	std::cout<<bEmpty<<std::endl;
	dwDegree = cTreeBinList.GetDegree();
	std::cout<<dwDegree<<std::endl;
	dwHeight = cTreeBinList.GetHeight();
	std::cout<<dwHeight<<std::endl;
	dwNodesNum = cTreeBinList.GetNodesNum();
	std::cout<<dwNodesNum<<std::endl;

	AL_ListSingle<DWORD> cListSingle;
	DWORD dwData;
	BOOL bSibling = cTreeBinList.GetSiblingAtNode(cListSingle, pTreeNode);
	if (TRUE == bSibling) {
		for (DWORD dwCnt=0; dwCnt<cListSingle.Length(); dwCnt++) {
			if (TRUE == cListSingle.Get(dwData, dwCnt)) {
				std::cout<<dwData<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListSingle.Clear();

	bSibling = cTreeBinList.GetSiblingAtNode(cListSingle, pTreeNode20);
	if (TRUE == bSibling) {
		for (DWORD dwCnt=0; dwCnt<cListSingle.Length(); dwCnt++) {
			if (TRUE == cListSingle.Get(dwData, dwCnt)) {
				std::cout<<dwData<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListSingle.Clear();

	BOOL bAncestor = cTreeBinList.GetAncestorAtNode(cListSingle, pRootNode);
	if (TRUE == bAncestor) {
		for (DWORD dwCnt=0; dwCnt<cListSingle.Length(); dwCnt++) {
			if (TRUE == cListSingle.Get(dwData, dwCnt)) {
				std::cout<<dwData<<", ";
			}
		}	
		std::cout<<std::endl;
	}

	bAncestor = cTreeBinList.GetAncestorAtNode(cListSingle, pTreeNode33);
	if (TRUE == bAncestor) {
		for (DWORD dwCnt=0; dwCnt<cListSingle.Length(); dwCnt++) {
			if (TRUE == cListSingle.Get(dwData, dwCnt)) {
				std::cout<<dwData<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListSingle.Clear();

	BOOL bDescendant = cTreeBinList.GetDescendantAtNode(cListSingle, pRootNode);
	if (TRUE == bDescendant) {
		for (DWORD dwCnt=0; dwCnt<cListSingle.Length(); dwCnt++) {
			if (TRUE == cListSingle.Get(dwData, dwCnt)) {
				std::cout<<dwData<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListSingle.Clear();

	bDescendant = cTreeBinList.GetDescendantAtNode(cListSingle, pTreeNode33);
	if (TRUE == bDescendant) {
		for (DWORD dwCnt=0; dwCnt<cListSingle.Length(); dwCnt++) {
			if (TRUE == cListSingle.Get(dwData, dwCnt)) {
				std::cout<<dwData<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListSingle.Clear();

	BOOL bOrder = cTreeBinList.PreOrderTraversal(cListSingle);
	if (TRUE == bOrder) {
		for (DWORD dwCnt=0; dwCnt<cListSingle.Length(); dwCnt++) {
			if (TRUE == cListSingle.Get(dwData, dwCnt)) {
				std::cout<<dwData<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListSingle.Clear();

	bOrder = cTreeBinList.InOrderTraversal(cListSingle);
	if (TRUE == bOrder) {
		for (DWORD dwCnt=0; dwCnt<cListSingle.Length(); dwCnt++) {
			if (TRUE == cListSingle.Get(dwData, dwCnt)) {
				std::cout<<dwData<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListSingle.Clear();

	bOrder = cTreeBinList.PostOrderTraversal(cListSingle);
	if (TRUE == bOrder) {
		for (DWORD dwCnt=0; dwCnt<cListSingle.Length(); dwCnt++) {
			if (TRUE == cListSingle.Get(dwData, dwCnt)) {
				std::cout<<dwData<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListSingle.Clear();

	bOrder = cTreeBinList.LevelOrderTraversal(cListSingle);
	if (TRUE == bOrder) {
		for (DWORD dwCnt=0; dwCnt<cListSingle.Length(); dwCnt++) {
			if (TRUE == cListSingle.Get(dwData, dwCnt)) {
				std::cout<<dwData<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListSingle.Clear();

	cTreeBinList.RemoveNode(pTreeNode20);
	bOrder = cTreeBinList.LevelOrderTraversal(cListSingle);
	if (TRUE == bOrder) {
		for (DWORD dwCnt=0; dwCnt<cListSingle.Length(); dwCnt++) {
			if (TRUE == cListSingle.Get(dwData, dwCnt)) {
				std::cout<<dwData<<", ";
			}
		}	
		std::cout<<std::endl;
	}
	cListSingle.Clear();
	bEmpty = cTreeBinList.IsEmpty();
	std::cout<<bEmpty<<std::endl;
	dwDegree = cTreeBinList.GetDegree();
	std::cout<<dwDegree<<std::endl;
	dwHeight = cTreeBinList.GetHeight();
	std::cout<<dwHeight<<std::endl;
	dwNodesNum = cTreeBinList.GetNodesNum();
	std::cout<<dwNodesNum<<std::endl;

#endif
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: 
相关文章推荐