您的位置:首页 > 运维架构 > Linux

linux内核源码阅读之facebook硬盘加速利器flashcache

2013-09-15 19:43 477 查看
从来没有写过源码阅读,这种感觉越来越强烈,虽然劣于文笔,但还是下定决心认真写一回。
源代码下载请参见上一篇flashcache之我见 http://blog.csdn.net/liumangxiong/article/details/11643473 下面代码对应的是tag下面的1.0版本的。看内核模块源码,闭着眼睛打开flashcache_init函数,区区百来行代码何足惧也。
1963int __init
1964flashcache_init(void)
1965{
1966	int r;
1967
1968	r = flashcache_jobs_init();
1969	if (r)
1970		return r;
1971	atomic_set(&nr_cache_jobs, 0);
1972	atomic_set(&nr_pending_jobs, 0);
1973#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
1974	INIT_WORK(&_kcached_wq, do_work, NULL);
1975#else
1976	INIT_WORK(&_kcached_wq, do_work);
1977#endif
1978	for (r = 0 ; r < 33 ; r++)
1979		size_hist[r] = 0;
1980	r = dm_register_target(&flashcache_target);
1981	if (r < 0) {
1982		DMERR("cache: register failed %d", r);
1983	}
1984#ifdef CONFIG_PROC_FS
1985#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,27)
1986	flashcache_table_header =
1987		register_sysctl_table(flashcache_root_table, 1);
1988#else
1989	flashcache_table_header =
1990		register_sysctl_table(flashcache_root_table);
1991#endif
1992	{
1993		struct proc_dir_entry *entry;
1994
1995		entry = create_proc_entry("flashcache_stats", 0, NULL);
1996		if (entry)
1997			entry->proc_fops =  &flashcache_stats_operations;
1998		entry = create_proc_entry("flashcache_errors", 0, NULL);
1999		if (entry)
2000			entry->proc_fops =  &flashcache_errors_operations;
2001		entry = create_proc_entry("flashcache_iosize_hist", 0, NULL);
2002		if (entry)
2003			entry->proc_fops =  &flashcache_iosize_hist_operations;
2004		entry = create_proc_entry("flashcache_pidlists", 0, NULL);
2005		if (entry)
2006			entry->proc_fops =  &flashcache_pidlists_operations;
2007		entry = create_proc_entry("flashcache_version", 0, NULL);
2008		if (entry)
2009			entry->proc_fops =  &flashcache_version_operations;
2010	}
2011#endif
2012	flashcache_control = (struct flashcache_control_s *)
2013		kmalloc(sizeof(struct flashcache_control_s *), GFP_KERNEL);
2014	flashcache_control->synch_flags = 0;
2015	register_reboot_notifier(&flashcache_notifier);
2016	return r;
2017}
先大致看一眼,flashcache_jobs_init()分配job内存结构的,INIT_WORK初始化WORK的,接下来一看proc字眼就知道是/proc下目录的文件,再后来创建一个flashcache_control_s管理结构,再注册一个关机回调函数。这样就走马观花地把这个函数看完了,那让写代码的人情何以堪?再问一下自己,flashcache究竟做了什么?脑子里还是一片空白。那接下来就到每个函数内探个究竟。
441static int
442flashcache_jobs_init(void)
443{
444#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,27)
445	_job_cache = kmem_cache_create("kcached-jobs",
446	                               sizeof(struct kcached_job),
447	                               __alignof__(struct kcached_job),
448	                               0, NULL, NULL);
449#else
450	_job_cache = kmem_cache_create("kcached-jobs",
451	                               sizeof(struct kcached_job),
452	                               __alignof__(struct kcached_job),
453	                               0, NULL);
454#endif
455	if (!_job_cache)
456		return -ENOMEM;
457
458	_job_pool = mempool_create(MIN_JOBS, mempool_alloc_slab,
459	                           mempool_free_slab, _job_cache);
460	if (!_job_pool) {
461		kmem_cache_destroy(_job_cache);
462		return -ENOMEM;
463	}
464#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,27)
465	_pending_job_cache = kmem_cache_create("pending-jobs",
466					       sizeof(struct pending_job),
467					       __alignof__(struct pending_job),
468					       0, NULL, NULL);
469#else
470	_pending_job_cache = kmem_cache_create("pending-jobs",
471					       sizeof(struct pending_job),
472					       __alignof__(struct pending_job),
473					       0, NULL);
474#endif
475	if (!_pending_job_cache) {
476		mempool_destroy(_job_pool);
477		kmem_cache_destroy(_job_cache);
478		return -ENOMEM;
479	}
480
481	_pending_job_pool = mempool_create(MIN_JOBS, mempool_alloc_slab,
482					   mempool_free_slab, _pending_job_cache);
483	if (!_pending_job_pool) {
484		kmem_cache_destroy(_pending_job_cache);
485		mempool_destroy(_job_pool);
486		kmem_cache_destroy(_job_cache);
487		return -ENOMEM;
488	}
489
490	return 0;
491}

首先是flashcache_jobs_init()函数,该函数里创建了两类job和两类的mem_pool,就像双胞胎看起来一样,实际上并不一样。_job_pool => flashcache_alloc_cache_job => new_kcached_job 调用new_kcached_job 有好多个,有flashcache_dirty_writeback、flashcache_read_hit、flashcache_read_miss、flashcache_write_miss、flashcache_write_hit、flashcache_dirty_writeback_sync、flashcache_start_uncached_io。如果仔细地看一下这些函数的名称,发现这些函数所做的事情正是一个写缓存的基本操作和动作,即writeback, writethrough, hit, miss。现在就以flashcache_dirty_writeback为例,看看到底在kcacheed_job起了什么作用?code首先是用new_kcached_job申请一个kcached_job结构体,接下来判断dmc->fast_remove_in_prog,这个是移除flashcache标志,设备都要删除掉了,显然就没必要再下发命令了。再判断job是否为空,else这里才是干的正事。这里job->action = WRITEDISK;是最重要的一句话,就是前面讲的写缓存基本操作,而这个action就可以看作是一个状态机,对应的状态如下:
245/* kcached/pending job states */
246#define READCACHE	1
247#define WRITECACHE	2
248#define READDISK	3
249#define WRITEDISK	4
250#define READFILL	5	/* Read Cache Miss Fill */
251#define INVALIDATE	6
252#define WRITEDISK_SYNC	7
这里设置的是WRITEDISK,就是写磁盘,那是从哪里写呢?是从写缓存写的,写缓存的数据又是在哪里呢?我们把SSD盘当作写缓存,所以是从SSD盘写到磁盘。那我们是不是要做很多事情,先从SSD读数据然后再往磁盘写呢?是的,但是我们不用做太多的事情,因为linux内核有大名鼎鼎的kcopyd线程,我们只需要把这些烦索的工作交给kcopyd完成就可以了,调用的接口是
int dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
unsigned int num_dests, struct dm_io_region *dests,unsigned int flags, dm_kcopyd_notify_fn fn, void *context)第一个参数是kcopyd_client,这是是flashcache_ctr即flashcache设备创建的构造函数中创建的,即每一个flashcache设备都对应一个kcopyd_client,那么为什么要创建这个结构体呢?可以简单地理解为使用kcopyd服务的一个句柄。第二参数是数据源,第三个为目的数量,第四个参数为要写的目标,第五个参数为额外标识,这里都设置为0,第六个参数fn是回调函数,设置了回调函数则此函数为异步,不阻塞,如果fn设置为NULL,则会同步等待。最后一个参数context是用于回调函数使用的参数,这里传入的正是我们现在最关心的job。我们已经把kcached_job派发出去了,接着来看是kcached_job是什么时候回来的,回来又做了什么事情,最后是怎么销毁的?在dm_kcopyd_copy中设置的回调函数是flashcache_kcopyd_callback。
901static void
902flashcache_kcopyd_callback(int read_err, unsigned int write_err, void *context)
903{
904	struct kcached_job *job = (struct kcached_job *)context;
905	struct cache_c *dmc = job->dmc;
906	int index = job->index;
907	unsigned long flags;
908
909	VERIFY(!in_interrupt());
910	DPRINTK("kcopyd_callback: Index %d", index);
911	VERIFY(job->bio == NULL);
912	spin_lock_irqsave(&dmc->cache_spin_lock, flags);
913	VERIFY(dmc->cache[index].cache_state & (DISKWRITEINPROG | VALID | DIRTY));
914	if (unlikely(sysctl_flashcache_error_inject & KCOPYD_CALLBACK_ERROR)) {
915		read_err = -EIO;
916		sysctl_flashcache_error_inject &= ~KCOPYD_CALLBACK_ERROR;
917	}
918	if (likely(read_err == 0 && write_err == 0)) {
919		spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
920		flashcache_md_write(job);
921	} else {
922		/* Disk write failed. We can not purge this block from flash */
923		DMERR("flashcache: Disk writeback failed ! read error %d write error %d block %lu",
924		      -read_err, -write_err, job->disk.sector);
925		VERIFY(dmc->cache_sets[index / dmc->assoc].clean_inprog > 0);
926		VERIFY(dmc->clean_inprog > 0);
927		dmc->cache_sets[index / dmc->assoc].clean_inprog--;
928		dmc->clean_inprog--;
929		spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
930		/* Set the error in the job and let do_pending() handle the error */
931		if (read_err) {
932			dmc->ssd_read_errors++;
933			job->error = read_err;
934		} else {
935			dmc->disk_write_errors++;
936			job->error = write_err;
937		}
938		flashcache_do_pending(job);
939		flashcache_clean_set(dmc, index / dmc->assoc); /* Kick off more cleanings */
940		dmc->cleanings++;
941	}
942}
到这里就表明写缓存的数据写到磁盘的过程已经完成了。首先检查结果是否成功了,如果都成功的话就调用flashcache_md_write。
860
861/*
862 * Kick off a cache metadata update (called from workqueue).
863 * Cache metadata update IOs to a given metadata sector are serialized using the
864 * nr_in_prog bit in the md sector bufhead.
865 * If a metadata IO is already in progress, we queue up incoming metadata updates
866 * on the pending_jobs list of the md sector bufhead. When kicking off an IO, we
867 * cluster all these pending updates and do all of them as 1 flash write (that
868 * logic is in md_write_kickoff), where it switches out the entire pending_jobs
869 * list and does all of those updates.
870 */
871void
872flashcache_md_write(struct kcached_job *job)
873{
874	struct cache_c *dmc = job->dmc;
875	struct cache_md_sector_head *md_sector_head;
876	unsigned long flags;
877
878	VERIFY(!in_interrupt());
879	VERIFY(job->action == WRITEDISK || job->action == WRITECACHE ||
880	       job->action == WRITEDISK_SYNC);
881	md_sector_head = &dmc->md_sectors_buf[INDEX_TO_MD_SECTOR(job->index)];
882	spin_lock_irqsave(&dmc->cache_spin_lock, flags);
883	/* If a write is in progress for this metadata sector, queue this update up */
884	if (md_sector_head->nr_in_prog != 0) {
885		struct kcached_job **nodepp;
886
887		/* A MD update is already in progress, queue this one up for later */
888		nodepp = &md_sector_head->pending_jobs;
889		while (*nodepp != NULL)
890			nodepp = &((*nodepp)->next);
891		job->next = NULL;
892		*nodepp = job;
893		spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
894	} else {
895		md_sector_head->nr_in_prog = 1;
896		spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
897		flashcache_md_write_kickoff(job);
898	}
899}
如果函数有注释还是仔细看一下吧,据个人观察,写linux内核的哥们都是惜字如金,如果他愿意写注释,那看注释绝对比看代码更重要,更有意义,如果有文档的话,那文档就是重中之重。看到这里有注释,真是欣喜万分,基本上看了注释不用看代码都行,但对于我这样的小菜鸟来说,有时还不能完全领会大侠的神意,就会继续读一下代码。
861/*
862 * Kick off a cache metadata update (called from workqueue).
863 * Cache metadata update IOs to a given metadata sector are serialized using the
864 * nr_in_prog bit in the md sector bufhead.
865 * If a metadata IO is already in progress, we queue up incoming metadata updates
866 * on the pending_jobs list of the md sector bufhead. When kicking off an IO, we
867 * cluster all these pending updates and do all of them as 1 flash write (that
868 * logic is in md_write_kickoff), where it switches out the entire pending_jobs
869 * list and does all of those updates.
870 */
派发cache metadata更新(从workqueue调用=》因为这里是从kcopyd回调回来的,所以这里友情提示一下,在内核要十分关心调用的上下文,是看内核代码的必修课,有时也是解决疑难问题的基础)。cache metadata的更新是由结构cache_md_sector_head中nr_in_prog字段来控制更新次序的(就是说更新cache metadata是按次序的,如果前面的更新未完成,后面的更新就排队等候)。排队等候的kcached_job就挂在cache_md_sector_head的pending_jobs上。在前面的更新操作回来时,就一次性把pending_jobs上的所有更新操作一次性派发。(因为所有更新就是对应一个sector中flashcache管理结构的)。这一段看不明白也没关系,因为这里还没有讲到flashcache的数据组织。但必须明白,我们在flashcache_dirty_writeback中把脏数据从写缓存SSD刷到磁盘,这里要做的事情就是把这个脏数据的的metadata从内存刷到SSD,这样就保证了在异常掉电的情况下元数据可以从SSD中找回。到这里kcached_job还没有销毁,我们继续跟踪下去 flashcache_md_write=>flashcache_md_write_kickoff。
660static void
661flashcache_md_write_kickoff(struct kcached_job *job)
662{
663	struct cache_c *dmc = job->dmc;
664	struct flash_cacheblock *md_sector;
665	int md_sector_ix;
666#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,27)
667	struct io_region where;
668#else
669	struct dm_io_region where;
670#endif
671	int i;
672	struct cache_md_sector_head *md_sector_head;
673	struct kcached_job *orig_job = job;
674	unsigned long flags;
675
676	if (flashcache_alloc_md_sector(job)) {
677		DMERR("flashcache: %d: Cache metadata write failed, cannot alloc page ! block %lu",
678		      job->action, job->disk.sector);
679		flashcache_md_write_callback(-EIO, job);
680		return;
681	}
682	spin_lock_irqsave(&dmc->cache_spin_lock, flags);
683	/*
684	 * Transfer whatever is on the pending queue to the md_io_inprog queue.
685	 */
686	md_sector_head = &dmc->md_sectors_buf[INDEX_TO_MD_SECTOR(job->index)];
687	md_sector_head->md_io_inprog = md_sector_head->pending_jobs;
688	md_sector_head->pending_jobs = NULL;
689	md_sector = job->md_sector;
690	md_sector_ix = INDEX_TO_MD_SECTOR(job->index) * MD_BLOCKS_PER_SECTOR;
691	/* First copy out the entire sector */
692	for (i = 0 ;
693	     i < MD_BLOCKS_PER_SECTOR && md_sector_ix < dmc->size ;
694	     i++, md_sector_ix++) {
695		md_sector[i].dbn = dmc->cache[md_sector_ix].dbn;
696#ifdef FLASHCACHE_DO_CHECKSUMS
697		md_sector[i].checksum = dmc->cache[md_sector_ix].checksum;
698#endif
699		md_sector[i].cache_state =
700			dmc->cache[md_sector_ix].cache_state & (VALID | INVALID | DIRTY);
701	}
702	/* Then set/clear the DIRTY bit for the "current" index */
703	if (job->action == WRITECACHE) {
704		/* DIRTY the cache block */
705		md_sector[INDEX_TO_MD_SECTOR_OFFSET(job->index)].cache_state =
706			(VALID | DIRTY);
707	} else { /* job->action == WRITEDISK* */
708		/* un-DIRTY the cache block */
709		md_sector[INDEX_TO_MD_SECTOR_OFFSET(job->index)].cache_state = VALID;
710	}
711
712	for (job = md_sector_head->md_io_inprog ;
713	     job != NULL ;
714	     job = job->next) {
715		if (job->action == WRITECACHE) {
716			/* DIRTY the cache block */
717			md_sector[INDEX_TO_MD_SECTOR_OFFSET(job->index)].cache_state =
718				(VALID | DIRTY);
719		} else { /* job->action == WRITEDISK* */
720			/* un-DIRTY the cache block */
721			md_sector[INDEX_TO_MD_SECTOR_OFFSET(job->index)].cache_state = VALID;
722		}
723	}
724	spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
725	where.bdev = dmc->cache_dev->bdev;
726	where.count = 1;
727	where.sector = 1 + INDEX_TO_MD_SECTOR(orig_job->index);
728	dmc->ssd_writes++;
729	dm_io_async_bvec(1, &where, WRITE,
730			 &orig_job->md_io_bvec,
731			 flashcache_md_write_callback, orig_job);
732	flashcache_unplug_device(dmc->cache_dev->bdev);
733}
这里cacheblock 信息保存到job->md_io_bvec的page页中,再调用dm_io_async_bvec将数据写到SSD盘中。我们来看一下该函数原型:

static int dm_io_async_bvec(unsigned int num_regions,
struct dm_io_region *where, int rw,
struct bio_vec *bvec, io_notify_fn fn,
void *context)
该函数与之前的dm_kcopyd_copy类似,我们最关心的是参数where,因为这是人生最重要的一课,你是谁?你要到哪里去?where的bdev域就是目标设备,而sector域就是起始地址,count表示要写的扇区数。这个函数就是把dmc->cache的管理结构打包到job->md_io_bvec中,然后写到SSD对应位置上。再接下来看写SSD完成调用flashcache_md_write_callback:
621void
622flashcache_md_write_callback(unsigned long error, void *context)
623{
624	struct kcached_job *job = (struct kcached_job *)context;
625
626	job->error = error;
627	push_md_complete(job);
628	schedule_work(&_kcached_wq);
629}
该函数只是简单地设置job的返回值,然后放到_md_complete_jobs这个链表里,然后通知workqueue处理。为什么不直接在这个函数里处理,而要放到后面处理呢?这就像每个公司都有个漂亮的前台秘书,这个物流公司送来了大箱的物料,美女秘书当然不会自己搬,随便撒个娇一大群工科男都抢着干活。这里函数是写完成的回调函数,是在软中断中调用的,软中断跟美女秘书一样,干不了重活,只能简单地签收一下,剩下的活就由workqueue来完成了。要继续我们的跟踪,那就得问workqueue是从哪里来的,workqueue做了什么,或者说对job做了什么?flashcache_init=>INIT_WORK(&_kcached_wq, do_work);=>process_jobs(&_md_complete_jobs, flashcache_md_write_done);先看process_jobs
284static void
285process_jobs(struct list_head *jobs,
286	     void (*fn) (struct kcached_job *))
287{
288	struct kcached_job *job;
289
290	while ((job = pop(jobs)))
291		(void)fn(job);
292}
就是从队列中把刚才美女秘书签收的job取出来,然后调用fn,fn就是这里注册的flashcache_md_write_done。从函数名有个蛋(done),就好像每天下午的5点半,一天的忙碌立马可以收工了,但是悲剧的LZ现在每个月都要加班72个小时,这样想想大家有没有从LZ的不幸中找到自己的幸福?
735void
736flashcache_md_write_done(struct kcached_job *job)
737{
738	struct cache_c *dmc = job->dmc;
739	struct cache_md_sector_head *md_sector_head;
740	int index;
741	unsigned long flags;
742	struct kcached_job *job_list;
743	int error = job->error;
744	struct kcached_job *next;
745	struct cacheblock *cacheblk;
746
747	VERIFY(!in_interrupt());
748	VERIFY(job->action == WRITEDISK || job->action == WRITECACHE ||
749	       job->action == WRITEDISK_SYNC);
750	flashcache_free_md_sector(job);
751	job->md_sector = NULL;
752	md_sector_head = &dmc->md_sectors_buf[INDEX_TO_MD_SECTOR(job->index)];
753	job_list = job;
754	job->next = md_sector_head->md_io_inprog;
755	md_sector_head->md_io_inprog = NULL;
756	for (job = job_list ; job != NULL ; job = next) {
757		next = job->next;
758		job->error = error;
759		index = job->index;
760		cacheblk = &dmc->cache[index];
761		spin_lock_irqsave(&dmc->cache_spin_lock, flags);
762		if (job->action == WRITECACHE) {
763			if (unlikely(sysctl_flashcache_error_inject & WRITECACHE_MD_ERROR)) {
764				job->error = -EIO;
765				sysctl_flashcache_error_inject &= ~WRITECACHE_MD_ERROR;
766			}
767			if (likely(job->error == 0)) {
768				if ((cacheblk->cache_state & DIRTY) == 0) {
769					dmc->cache_sets[index / dmc->assoc].nr_dirty++;
770					dmc->nr_dirty++;
771				}
772				dmc->md_write_dirty++;
773				cacheblk->cache_state |= DIRTY;
774			} else
775				dmc->ssd_write_errors++;
776			flashcache_bio_endio(job->bio, job->error);
777			if (job->error || cacheblk->head) {
778				if (job->error) {
779					DMERR("flashcache: WRITE: Cache metadata write failed ! error %d block %lu",
780					      -job->error, cacheblk->dbn);
781				}
782				spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
783				flashcache_do_pending(job);
784			} else {
785				cacheblk->cache_state &= ~BLOCK_IO_INPROG;
786				spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
787				flashcache_free_cache_job(job);
788				if (atomic_dec_and_test(&dmc->nr_jobs))
789					wake_up(&dmc->destroyq);
790			}
791		} else {
792			int action = job->action;
793
794			if (unlikely(sysctl_flashcache_error_inject & WRITEDISK_MD_ERROR)) {
795				job->error = -EIO;
796				sysctl_flashcache_error_inject &= ~WRITEDISK_MD_ERROR;
797			}
798			/*
799			 * If we have an error on a WRITEDISK*, no choice but to preserve the
800			 * dirty block in cache. Fail any IOs for this block that occurred while
801			 * the block was being cleaned.
802			 */
803			if (likely(job->error == 0)) {
804				dmc->md_write_clean++;
805				cacheblk->cache_state &= ~DIRTY;
806				VERIFY(dmc->cache_sets[index / dmc->assoc].nr_dirty > 0);
807				VERIFY(dmc->nr_dirty > 0);
808				dmc->cache_sets[index / dmc->assoc].nr_dirty--;
809				dmc->nr_dirty--;
810			} else
811				dmc->ssd_write_errors++;
812			VERIFY(dmc->cache_sets[index / dmc->assoc].clean_inprog > 0);
813			VERIFY(dmc->clean_inprog > 0);
814			dmc->cache_sets[index / dmc->assoc].clean_inprog--;
815			dmc->clean_inprog--;
816			if (job->error || cacheblk->head) {
817				if (job->error) {
818					DMERR("flashcache: CLEAN: Cache metadata write failed ! error %d block %lu",
819					      -job->error, cacheblk->dbn);
820				}
821				spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
822				flashcache_do_pending(job);
823				/* Kick off more cleanings */
824				if (action == WRITEDISK)
825					flashcache_clean_set(dmc, index / dmc->assoc);
826				else
827					flashcache_sync_blocks(dmc);
828			} else {
829				cacheblk->cache_state &= ~BLOCK_IO_INPROG;
830				spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
831				flashcache_free_cache_job(job);
832				if (atomic_dec_and_test(&dmc->nr_jobs))
833					wake_up(&dmc->destroyq);
834				/* Kick off more cleanings */
835				if (action == WRITEDISK)
836					flashcache_clean_set(dmc, index / dmc->assoc);
837				else
838					flashcache_sync_blocks(dmc);
839			}
840			dmc->cleanings++;
841			if (action == WRITEDISK_SYNC)
842				flashcache_update_sync_progress(dmc);
843		}
844	}
845	spin_lock_irqsave(&dmc->cache_spin_lock, flags);
846	if (md_sector_head->pending_jobs != NULL) {
847		/* peel off the first job from the pending queue and kick that off */
848		job = md_sector_head->pending_jobs;
849		md_sector_head->pending_jobs = job->next;
850		job->next = NULL;
851		spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
852		VERIFY(job->action == WRITEDISK || job->action == WRITECACHE ||
853		       job->action == WRITEDISK_SYNC);
854		flashcache_md_write_kickoff(job);
855	} else {
856		md_sector_head->nr_in_prog = 0;
857		spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
858	}
859}
860
首先是flashcache_free_md_sector,这个函数只是简单地把刚才分配的记录cacheblock 的page页释放。哪个刚才啊?就是flashcache_md_write_kickoff中flashcache_alloc_md_sector申请的page页。所以看这个函数时要回头再去看看flashcache_md_write_kickoff,所以前面提到了上下文,那么在这里kickoff是上文,done就是下文,上文种什么因,下文就得到什么果。上文申请了page页,下文就要释放page页;上文把dmc->md_sectors_buf[]中struct kcached_job *md_io_inprog对应的kcached_job都已经下发了,下文这里才有一个for循环。细心的你可能会问,为什么这里的kcached_job可以一起下发?那首先要来了解一下这里的kcached_job是干什么的。是结构体上的:
/*
* We have one of these for *every* cache metadata sector, to keep track
* of metadata ios in progress for blocks covered in this sector. Only
* one metadata IO per sector can be in progress at any given point in
* time
*/
struct cache_md_sector_head {
u_int32_t		nr_in_prog;
struct kcached_job	*pending_jobs, *md_io_inprog;
};
按规矩先看注释,每一个cache metadata扇区都有对应一个cache_md_sector_head结构,用于同步进程(内存中)cacheblock metadata到cache metadata扇区。同时只能有一个IO在同步,对应的是cache_md_sector_head->nr_in_prog。回答上面的问题,就是这些kcached_job是对应同一个扇区内的不同metadata的写,所以可以合并。这个扇区指的是SSD盘上存放flash_block结构的。再回到flashcache_md_write_done函数中,在for循环中job->action为WRITEDISK,所以直接来到for循环中else,迎面而来的又是一行注释,在WRITEDISK*发生错误时,只有保持cacheblock的DIRTY标志。接下来判断有错误或者cacheblock上还有pending_job,那么继续下发IO,否则的话清除cacheblock的处理标志,这里我们终于见到了kcached_job完成了他的使命,调用flashcache_free_cache_job将该结构返回给内存池。似乎到这里我们就可以像童话里讲的“从此他们过上了幸福的生活”来结束kcached_job的介绍。然而回归资源池也意味着kcached_job的再生,接着判断action==WRITEDISK,调用flashcache_clean_set,将超过脏水平线的cache块刷回到磁盘。就是说在每次写磁盘返回的时候这个workqueue都会检查一下脏水平线,如果超过就继续往下刷,这就又回到了本文最开始的flashcache_dirty_writeback函数,真是因果联系,环环相扣,kcached_job的再生不是为了自己,而是为cacheblock的再生,所以说人不能只为自己活着,每个人只是万千轮回里的一个元素,都是为了成全其他元素而进入六道轮回。下面一篇会从flashcache的数据结构和存储设计来分析。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: