您的位置:首页 > 运维架构 > Linux

linux-2.6.26内核中ARM中断实现详解(1)

2013-08-19 16:43 330 查看
看了一些网络上关于linux中断实现的文章,感觉有一些写的非常好,在这里首先感谢他们的无私付出,然后也想再补充自己对一些问题的理解。先从函数注册引出问题吧。

一、中断注册方法

在linux内核中用于申请中断的函数是request_irq(),函数原型在Kernel/irq/manage.c中定义:

int request_irq(unsigned int irq, irq_handler_t handler,

unsigned long irqflags, const char *devname, void *dev_id)

irq是要申请的硬件中断号。

handler是向系统注册的中断处理函数,是一个回调函数,中断发生时,系统调用这个函数,dev_id参数将被传递给它。

irqflags是中断处理的属性,若设置了IRQF_DISABLED (老版本中的SA_INTERRUPT,本版zhon已经不支持了),则表示中断处理程序是快速处理程序,快速处理程序被调用时屏蔽所有中断,慢速处理程序不屏蔽;若设置了IRQF_SHARED (老版本中的SA_SHIRQ),则表示多个设备共享中断,若设置了IRQF_SAMPLE_RANDOM(老版本中的SA_SAMPLE_RANDOM),表示对系统熵有贡献,对系统获取随机数有好处。(这几个flag是可以通过或的方式同时使用的)

dev_id在中断共享时会用到,一般设置为这个设备的设备结构体或者NULL。

devname设置中断名称,在cat /proc/interrupts中可以看到此名称。

request_irq()返回0表示成功,返回-INVAL表示中断号无效或处理函数指针为NULL,返回-EBUSY表示中断已经被占用且不能共享。

关于中断注册的例子,大家可在内核中搜索下request_irq。

在编写驱动的过程中,比较容易产生疑惑的地方是:

1、中断向量表在什么位置?是如何建立的?

2、从中断开始,系统是怎样执行到我自己注册的函数的?

3、中断号是如何确定的?对于硬件上有子中断的中断号如何确定?

4、中断共享是怎么回事,dev_id的作用是?

本文以2.6.26内核和S3C2410处理器为例,为大家讲解这几个问题。

二、异常向量表的建立

在ARM V4及V4T以后的大部分处理器中,中断向量表的位置可以有两个位置:一个是0,另一个是0xffff0000。可以通过CP15协处理器c1寄存器中V位(bit[13])控制。V和中断向量表的对应关系如下:

V=0 ~ 0x00000000~0x0000001C

V=1 ~ 0xffff0000~0xffff001C

arch/arm/mm/proc-arm920.S中

.section ".text.init", #alloc, #execinstr

__arm920_setup:

…… orr r0, r0, #0x2100 @ ..1. ...1 ..11 ...1

//bit13=1 中断向量表基址为0xFFFF0000。R0的值将被付给CP15的C1.

在linux中,向量表建立的函数为:

init/main.c->start_kernel()->trap_init()

void __init trap_init(void)

{

unsigned long vectors = CONFIG_VECTORS_BASE;

……

memcpy((void *)vectors, __vectors_start, __vectors_end - __vectors_start);

memcpy((void *)vectors + 0x200, __stubs_start, __stubs_end - __stubs_start);

....

}

在2.6.26内核中CONFIG_VECTORS_BASE最初是在各个平台的配置文件中设定的,如:

arch/arm/configs/s3c2410_defconfig中

CONFIG_VECTORS_BASE=0xffff0000

__vectors_end 至 __vectors_start之间为异常向量表。

位于arch/arm/kernel/entry-armv.S

.globl __vectors_start

__vectors_start:

swi SYS_ERROR0:

b vector_und + stubs_offset //复位异常:

ldr pc, .LCvswi + stubs_offset //未定义指令异常:

b vector_pabt + stubs_offset //软件中断异常:

b vector_dabt + stubs_offset //数据异常:

b vector_addrexcptn + stubs_offset //保留:

b vector_irq + stubs_offset //普通中断异常:

b vector_fiq + stubs_offset //快速中断异常:

.globl __vectors_end:

__vectors_end:

__stubs_end 至 __stubs_start之间是异常处理的位置。也位于文件arch/arm/kernel/entry-armv.S中。vector_und、vector_pabt、vector_irq、vector_fiq都在它们中间。

stubs_offset值如下:

.equ stubs_offset, __vectors_start + 0x200 - __stubs_start

stubs_offset是如何确定的呢?(引用网络上的一段比较详细的解释)
当汇编器看到B指令后会把要跳转的标签转化为相对于当前PC的偏移量(±32M)写入指令码。从上面的代码可以看到中断向量表和stubs都发生了代码搬移,所以如果中断向量表中仍然写成b vector_irq,那么实际执行的时候就无法跳转到搬移后的vector_irq处,因为指令码里写的是原来的偏移量,所以需要把指令码中的偏移量写成搬移后的。我们把搬移前的中断向量表中的irq入口地址记irq_PC,它在中断向量表的偏移量就是irq_PC-vectors_start,
vector_irq在stubs中的偏移量是vector_irq-stubs_start,这两个偏移量在搬移前后是不变的。搬移后 vectors_start在0xffff0000处,而stubs_start在0xffff0200处,所以搬移后的vector_irq相对于中断 向量中的中断入口地址的偏移量就是,200+vector_irq在stubs中的偏移量再减去中断入口在向量表中的偏移量,即200+ vector_irq-stubs_start-irq_PC+vectors_start = (vector_irq-irq_PC)
+ vectors_start+200-stubs_start,对于括号内的值实际上就是中断向量表中写的vector_irq,减去irq_PC是由汇编器完成的,而后面的 vectors_start+200-stubs_start就应该是stubs_offset,实际上在entry-armv.S中也是这样定义的。

http://www.lai18.com/content/840580.html

讲解ARM汇编指令的书籍中,很多在讲到B指令的时候会说这条指令时一条绝对跳转指令,这是不负责任的说法。这条指令的迷惑之处在于,B指令的汇编形式为:

b label        :        :label:    mov r1,r2    mov r2,r3


从汇编指令的书写形式上,确实是一条绝对跳转指令,但是实际上汇编在将“B label”这条指令翻译为机器指令的时候,会计算label相对于当前PC的偏移,将这个偏移值放到机器码中,所以实际上,B跳转指令为相对跳转指令。用相对跳转指令就可以编写位置无关的代码。

什么是位置无关的代码,其实位置无关的意思就是说编译好的一段代码可以放到内存的任何位置运行而结果不会变。了解arm-linux内核中中断向量表建立过程的同学大概都熟悉以下的一段代码:

.globl __vectors_start__vectors_start:    swi SYS_ERROR0    b vector_und + stubs_offset    ldr pc, .LCvswi + stubs_offset    b vector_pabt + stubs_offset    b vector_dabt + stubs_offset    b vector_addrexcptn + stubs_offset    b vector_irq + stubs_offset    b vector_fiq + stubs_offset.globl __vectors_end__vectors_end:


上面的代码是arm-linux中中断向量表中的内容,比如:中断发生后悔就会跳转到标红的那条指令开始去执行中断处理过程。在我们编译内核的时候,上面的代码有一个链接地址,但是大家都知道,在内核中中断向量表位于0xFFFF000开始的位置,内核在early_trap_init函数中会将上面的代码“搬移”到0xFFFF000开始的位置。问题就来了,b指令是怎么找到目的地址的?

下面的图很详细的解释了这个问题:



上图下面的线显示了代码被“搬移”之前相对位置,上面的线显示了“搬移”后代码的相对位置。假设现在发生了一个数据预取异常,PC会先跳转到t1的位置执行b vector_irq + stubs_offset 然后跳转到E(vector_dabt)去执行对应的处理语句。我们怎样在写代码的时候确定将“b vector_irq + stubs_offset ”这样的代码放到中断向量表中,然后在进行代码“搬移”工作之后,发生异常事件的时候,在固定的位置执行一条指令,这条指令中包含了相对于当前PC值得偏移,进而跳转到一个新的位置开始执行后面的处理。要记住,B指令实际上是一条相对跳转指令,而且代码在编译的时候与“搬移”之后的代码在相对位置上是确定的,这里就有了位置无关的代码的用武之地。

这样解释之后,大家可以静下心来,看着linux中的源码(arch/arm/kernel/entry-armv.S),读读上面的英文(很简单),至于上面的计算公式,我相信一个初中能够正常毕业的人就能看懂。

当你看到offset=vector_dabt+stub_offset-t2的时候,你要这样理解,内核编译到t2这条指令的时候(b vector_dabt + stubs_offset )其实需要确定的是代码“搬移”之后的一个偏移,这个偏移是固定的(上图中的L1+L2,而且这个偏移在执行的时候,也就是代码“搬移”之后才有意义),偏移加上当前的PC(t2)的值是vector_dabt + stubs_offset(这个值其实就是vector_dabt+stub_offset
- t2(这个-t2是由汇编做的,所以我们写的跳转值要少去只写
b
vector_irq + stubs_offset
//普通中断异常 )),所以中断向量表中的这一项就写成了“b vector_dabt + stubs_offset ”

这么纠结就是b指令,不是绝对跳转,是由编译器算的相对PC值的相对跳转。

说的比较啰嗦,希望大家能有耐心看一下。
http://www.chengxuyuans.com/Linux/55825.html
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: