您的位置:首页 > 其它

2013-02-02 11:26 很实用的讲解,CRC32

2013-08-07 15:38 113 查看

循环冗余检验 (CRC) 算法原理

转载:http://www.cnblogs.com/esestt/archive/2007/08/09/848856.html

Cyclic Redundancy Check循环冗余检验,是基于数据计算一组效验码,用于核对数据传输过程中是否被更改或传输错误。

算法原理
假设数据传输过程中需要发送15位的二进制信息 g=101001110100001,这串二进制码可表示为代数多项式g(x) = x^14 + x^12 + x^9 + x^8 + x^7 + x^5 + 1,其中g中第k位的值,对应g(x)中x^k的系数。将g(x)乘以x^m,既将g后加m个0,然后除以m阶多项式h(x),得到的(m-1)阶余项 r(x)对应的二进制码r就是CRC编码。

h(x)可以自由选择或者使用国际通行标准,一般按照h(x)的阶数m,将CRC算法称为CRC-m,比如CRC-32、CRC-64等。国际通行标准可以参看http://en.wikipedia.org/wiki/Cyclic_redundancy_check

g(x)和h(x)的除运算,可以通过g和h做xor(异或)运算。比如将11001与10101做xor运算:



明白了xor运算法则后,举一个例子使用CRC-8算法求101001110100001的效验码。CRC-8标准的h(x) = x^8 + x^7 + x^6 + x^4 + x^2 + 1,既h是9位的二进制串111010101。



经过迭代运算后,最终得到的r是10001100,这就是CRC效验码。

通过示例,可以发现一些规律,依据这些规律调整算法:

1. 每次迭代,根据gk的首位决定b,b是与gk进行运算的二进制码。若gk的首位是1,则b=h;若gk的首位是0,则b=0,或者跳过此次迭代,上面的例子中就是碰到0后直接跳到后面的非零位。



2. 每次迭代,gk的首位将会被移出,所以只需考虑第2位后计算即可。这样就可以舍弃h的首位,将b取h的后m位。比如CRC-8的h是111010101,b只需是11010101。



3. 每次迭代,受到影响的是gk的前m位,所以构建一个m位的寄存器S,此寄存器储存gk的前m位。每次迭代计算前先将S的首位抛弃,将寄存器左移一位,同时将g的后一位加入寄存器。若使用此种方法,计算步骤如下:



※蓝色表示寄存器S的首位,是需要移出的,b根据S的首位选择0或者h。黄色是需要移入寄存器的位。S'是经过位移后的S。

查表法
同样是上面的那个例子,将数据按每4位组成1个block,这样g就被分成6个block。



下面的表展示了4次迭代计算步骤,灰色背景的位是保存在寄存器中的。



经4次迭代,B1被移出寄存器。被移出的部分,不我们关心的,我们关心的是这4次迭代对B2和B3产生了什么影响。注意表中红色的部分,先作如下定义:

B23 = 00111010

b1 = 00000000

b2 = 01010100

b3 = 10101010

b4 = 11010101

b' = b1 xor b2 xor b3 xor b4

4次迭代对B2和B3来说,实际上就是让它们与b1,b2,b3,b4做了xor计算,既:

B23 xor b1 xor b2 xor b3 xor b4

可以证明xor运算满足交换律和结合律,于是:

B23 xor b1 xor b2 xor b3 xor b4 = B23 xor (b1 xor b2 xor b3 xor b4) = B23 xor b'

b1是由B1的第1位决定的,b2是由B1迭代1次后的第2位决定(既是由B1的第1和第2位决定),同理,b3和b4都是由B1决定。通过B1就 可以计算出b'。另外,B1由4位组成,其一共2^4有种可能值。于是我们就可以想到一种更快捷的算法,事先将b'所有可能的值,16个值可以看成一个 表;这样就可以不必进行那4次迭代,而是用B1查表得到b'值,将B1移出,B3移入,与b'计算,然后是下一次迭代。



可看到每次迭代,寄存器中的数据以4位为单位移入和移出,关键是通过寄存器前4位查表获得

,这样的算法可以大大提高运算速度。

上面的方法是半字节查表法,另外还有单字节和双字节查表法,原理都是一样的——事先计算出2^8或2^16个b'的可能值,迭代中使用寄存器前8位或16位查表获得b'。

PS:补充重要知识点:
http://hi.baidu.com/ivan_liumh/blog/item/0fd28dd3c63062d9562c8479.html
循环冗余校验码

在串行传送(磁盘、通讯)中,广泛采用循环冗余校验码(CRC)。CRC也是给信息码加上几位校验码,以增加整个编码系统的码距和查错纠错能力。

CRC的理论很复杂,一般书上只介绍已有生成多项式后计算校验码的方法。检错能力与生成多项式有关,只能根据书上的结论死记。

循 环冗余校验码(CRC)的基本原理是:在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的 (N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项 式。

校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x)左移R位,则可表示成C(x)*2R,这样C(x)的右边就会空出R位,这就是校验码的位置。通过C(x)*2R除以生成多项式G(x)得到的余数就是校验码。

几个基本概念

1、多项式与二进制数码

多项式和二进制数有直接对应关系:x的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x的最高幂次为R,转换成对应的二进制数有R+1位。

多项式包括生成多项式G(x)和信息多项式C(x)。

如生成多项式为G(x)=x4+x3+x+1, 可转换为二进制数码11011。

而发送信息位 1111,可转换为数据多项式为C(x)=x3+x2+x+1。

2、生成多项式

是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。

在发送方,利用生成多项式对信息多项式做模2除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2除检测和确定错误位置。

应满足以下条件:

a、生成多项式的最高位和最低位必须为1。

b、当被传送信息(CRC码)任何一位发生错误时,被生成多项式做模2除后应该使余数不为0。

c、不同位发生错误时,应该使余数不同。

d、对余数继续做模2除,应使余数循环。

将这些要求反映为数学关系是比较复杂的。但可以从有关资料查到常用的对应于不同码制的生成多项式如图9所示:

图9 常用的生成多项式

3、模2除(按位除)

模2除做法与算术除法类似,但每一位除(减)的结果不影响其它位,即不向上一位借位。所以实际上就是异或。然后再移位移位做下一位的模2减。步骤如下:

a、用除数对被除数最高几位做模2减,没有借位。

b、除数右移一位,若余数最高位为1,商为1,并对余数做模2减。若余数最高位为0,商为0,除数继续右移一位。

c、一直做到余数的位数小于除数时,该余数就是最终余数。

【例】1111000除以1101:

1011———商

————

1111000-----被除数

1101———— 除数

————

010000

1101

————

01010

1101

————

111————余数

CRC码的生成步骤

1、将x的最高幂次为R的生成多项式G(x)转换成对应的R+1位二进制数。

2、将信息码左移R位,相当与对应的信息多项式C(x)*2R

3、用生成多项式(二进制数)对信息码做模2除,得到R位的余数。

4、将余数拼到信息码左移后空出的位置,得到完整的CRC码。

【例】假设使用的生成多项式是G(x)=x3+x+1。4位的原始报文为1010,求编码后的报文。

解:

1、将生成多项式G(x)=x3+x+1转换成对应的二进制除数1011。

2、此题生成多项式有4位(R+1),要把原始报文C(x)左移3(R)位变成1010000

3、用生成多项式对应的二进制数对左移4位后的原始报文进行模2除:

1001-------商

------------------------

1010000

1011----------除数

------------

1000

1011

------------

011-------余数(校验位)

5、编码后的报文(CRC码):

1010000

+ 011

------------------

1010011

CRC的和纠错

在 接收端收到了CRC码后用生成多项式为G(x)去做模2除,若得到余数为0,则码字无误。若如果有一位出错,则余数不为0,而且不同位出错,其余数也不 同。可以证明,余数与出错位的对应关系只与码制及生成多项式有关,而与待测碼字(信息位)无关。图10给出了G(x)=1011,C(x)=1010的出 错模式,改变C(x)(码字),只会改变表中码字内容,不改变余数与出错位的对应关系。

图10 (7,4)CRC码的出错模式(G(x)=1011)

如 果循环码有一位出错,用G(x)作模2除将得到一个不为0的余数。如果对余数补0继续除下去,我们将发现一个有趣的结果;各次余数将按图10顺序循环。例 如第一位出错,余数将为001,补0后再除(补0后若最高位为1,则用除数做模2减取余;若最高位为0,则其最低3位就是余数),得到第二次余数为 010。以后继续补0作模2除,依次得到余数为100,0ll…,反复循环,这就是“循环码”名称的由来。这是一个有价值的特点。如果我们在求出余数不为 0后,一边对余数补0继续做模2除,同时让被检测的校验码字循环左移。图10说明,当出现余数(101)时,出错位也移到A7位置。可通过异或门将它纠正后在下一次移位时送回A1。这样我们就不必像海明校验那样用译码电路对每一位提供纠正条件。当位数增多时,循环码校验能有效地降低硬件代价,这是它得以广泛应用的主要原因。

【例】 对图10的CRC码(G(x)=1011,C(x)=1010),若接收端收到的码字为1010111,用G(x)=1011做模2除得到一个不为0的余 数100,说明传输有错。将此余数继续补0用G(x)=1011作模2除,同时让码字循环左移1010111。做了4次后,得到余数为101,这时码字也 循环左移4位,变成1111010。说明出错位已移到最高位A7,将最高位1取反后变成0111010。再将它循环左移3位,补足7次,出错位回到A3位,就成为一个正确的码字1010011。

引用:http://hi.baidu.com/tudou888/blog/item/36df6017172a6e4020a4e95c.html

CRC-32 的程序实现

为了提高编码效率,在实际运用中大多采用查表法来完成CRC-32 校验,下面是产生CRC-32

校验吗的子程序。

unsigned long crc_32_tab[256]={

0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535,

0x9e6495a3,0x0edb8832,…, 0x5a05df1b, 0x2d02ef8d

};//事先计算出的参数表,共有256 项,未全部列出。

unsigned long GenerateCRC32(char xdata * DataBuf,unsigned long len)

{

unsigned long oldcrc32;

unsigned long crc32;

unsigned long oldcrc;

unsigned int charcnt;

char c,t;

oldcrc32 = 0x00000000; //初值为0

charcnt=0;

while (len--) {

t= (oldcrc32 >> 24) & 0xFF; //要移出的字节的值

oldcrc=crc_32_tab[t]; //根据移出的字节的值查表

c=DataBuf[charcnt]; //新移进来的字节值

oldcrc32= (oldcrc32 << 8) | c; //将新移进来的字节值添在寄存器末字节中

oldcrc32=oldcrc32^oldcrc; //将寄存器与查出的值进行xor 运算

charcnt++;

}

crc32=oldcrc32;

return crc32;

}

参数表可以先在PC 机上算出来,也可在程序初始化时完成。下面是用于计算参数表的c 语言

子程序,在Visual C++ 6.0 下编译通过。

#include <stdio.h>

unsigned long int crc32_table[256];

unsigned long int ulPolynomial = 0x04c11db7;

unsigned long int Reflect(unsigned long int ref, char ch)

{ unsigned long int value(0);

// 交换bit0 和bit7,bit1 和bit6,类推

for(int i = 1; i < (ch + 1); i++)

{ if(ref & 1)

value |= 1 << (ch - i);

ref >>= 1; }

return value;

}

init_crc32_table()

{ unsigned long int crc,temp;

// 256 个值

for(int i = 0; i <= 0xFF; i++)

{ temp=Reflect(i, 8);

crc32_table[i]= temp<< 24;

for (int j = 0; j < 8; j++){

unsigned long int t1,t2;

unsigned long int flag=crc32_table[i]&0x80000000;

t1=(crc32_table[i] << 1);

if(flag==0)

t2=0;

else

t2=ulPolynomial;

crc32_table[i] =t1^t2 ; }

crc=crc32_table[i];

crc32_table[i] = Reflect(crc32_table[i], 32);

}

}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: