您的位置:首页 > 其它

颜色空间系列3: RGB和YCbCr颜色空间的转换及优化算法

2013-02-14 18:53 597 查看
  颜色空间系列代码下载链接:http://files.cnblogs.com/Imageshop/ImageInfo.rar (同文章同步更新)

在常用的几种颜色空间中,YCbCr颜色空间在学术论文中出现的频率是相当高的,常用于肤色检测等等。其和RGB空间之间的相互转换公式在网上也有多种,我们这里取http://en.wikipedia.org/wiki/YCbCr 描述的JPG转换时使用的计算公式:

  JPEG conversion

  JFIF usage of JPEG allows Y′CbCr where Y′, CB and CR have the full 8-bit range of 0-255:


    


  And back:

    


上述公式的主要优点是转换后的各分量的范围也在0到255之间,因此用 byte类型的变量即可容纳新的颜色空间。

要避免浮点运算带来的速度瓶颈,这里同样可以用 颜色空间系列1: RGB和CIEXYZ颜色空间的转换及相关优化 文章中同样的优化技巧。

为了可以指定位移的大小,我们采用常量的定义方式是计算各放大系数。

const float YCbCrYRF = 0.299F;              // RGB转YCbCr的系数(浮点类型)
const float YCbCrYGF = 0.587F;
const float YCbCrYBF = 0.114F;
const float YCbCrCbRF = -0.168736F;
const float YCbCrCbGF = -0.331264F;
const float YCbCrCbBF = 0.500000F;
const float YCbCrCrRF = 0.500000F;
const float YCbCrCrGF = -0.418688F;
const float YCbCrCrBF = -0.081312F;

const float RGBRYF = 1.00000F;            // YCbCr转RGB的系数(浮点类型)
const float RGBRCbF = 0.0000F;
const float RGBRCrF = 1.40200F;
const float RGBGYF = 1.00000F;
const float RGBGCbF = -0.34414F;
const float RGBGCrF = -0.71414F;
const float RGBBYF = 1.00000F;
const float RGBBCbF = 1.77200F;
const float RGBBCrF = 0.00000F;

const int Shift = 20;
const int HalfShiftValue = 1 << (Shift - 1);

const int YCbCrYRI = (int)(YCbCrYRF * (1 << Shift) + 0.5);         // RGB转YCbCr的系数(整数类型)
const int YCbCrYGI = (int)(YCbCrYGF * (1 << Shift) + 0.5);
const int YCbCrYBI = (int)(YCbCrYBF * (1 << Shift) + 0.5);
const int YCbCrCbRI = (int)(YCbCrCbRF * (1 << Shift) + 0.5);
const int YCbCrCbGI = (int)(YCbCrCbGF * (1 << Shift) + 0.5);
const int YCbCrCbBI = (int)(YCbCrCbBF * (1 << Shift) + 0.5);
const int YCbCrCrRI = (int)(YCbCrCrRF * (1 << Shift) + 0.5);
const int YCbCrCrGI = (int)(YCbCrCrGF * (1 << Shift) + 0.5);
const int YCbCrCrBI = (int)(YCbCrCrBF * (1 << Shift) + 0.5);

const int RGBRYI = (int)(RGBRYF * (1 << Shift) + 0.5);              // YCbCr转RGB的系数(整数类型)
const int RGBRCbI = (int)(RGBRCbF * (1 << Shift) + 0.5);
const int RGBRCrI = (int)(RGBRCrF * (1 << Shift) + 0.5);
const int RGBGYI = (int)(RGBGYF * (1 << Shift) + 0.5);
const int RGBGCbI = (int)(RGBGCbF * (1 << Shift) + 0.5);
const int RGBGCrI = (int)(RGBGCrF * (1 << Shift) + 0.5);
const int RGBBYI = (int)(RGBBYF * (1 << Shift) + 0.5);
const int RGBBCbI = (int)(RGBBCbF * (1 << Shift) + 0.5);
const int RGBBCrI = (int)(RGBBCrF * (1 << Shift) + 0.5);


RGB转为YCbCr的代码:

public static void ToYCbCr(byte* From, byte* To, int Length = 1)
{
if (Length < 1) return;
byte* End = From + Length * 3;
int Red, Green, Blue;
// int Y, Cb, Cr;
while (From != End)
{
Blue = *From; Green = *(From + 1); Red = *(From + 2);
// 无需判断是否存在溢出,因为测试过整个RGB空间的所有颜色值,无颜色存在溢出
*To = (byte)((YCbCrYRI * Red + YCbCrYGI * Green + YCbCrYBI * Blue + HalfShiftValue) >> Shift);
*(To + 1) = (byte)( 128 + ( (YCbCrCbRI * Red + YCbCrCbGI * Green + YCbCrCbBI * Blue + HalfShiftValue) >> Shift));
*(To + 2) = (byte) (128+( (YCbCrCrRI * Red + YCbCrCrGI * Green + YCbCrCrBI * Blue + HalfShiftValue) >> Shift));
// *To = (byte)Y;          // 不要把直接计算的代码放在这里,会降低速度,
//*(To + 1) = (byte)Cb;
//*(To + 2) = (byte)Cr;
From += 3;
To += 3;
}
}


  被注释掉的代码时原始的,因为这种比较简单的代码,直接对表达式进行强制类型转换比用中间变量要少几条汇编码,并且中间变量越少,在编译后越有可能让CPU用寄存器来缓存一些变量,而不是用内存。

比如我们比较下注释部分和上述代码的反编译码:

注释掉的部分的反编译码:

Y = (YCbCrYRI * Red + YCbCrYGI * Green + YCbCrYBI * Blue + HalfShiftValue) >> Shift;
0000003a  imul        eax,eax,4C8B4h
00000040  imul        edx,ebx,9645Ah
00000046  add         eax,edx
00000048  imul        edx,edi,1D2F2h
0000004e  lea         eax,[eax+edx+00080000h]
00000055  sar         eax,14h
00000058  mov         dword ptr [ebp-18h],eax
*To = (byte)Y;
0000005b  mov         byte ptr [esi],al


上述代码的反编译码:

*To = (byte) ( (YCbCrYRI * Red + YCbCrYGI * Green + YCbCrYBI * Blue + HalfShiftValue) >> Shift);
0000003a  imul        eax,ebx,4C8B4h
00000040  imul        edx,edi,9645Ah
00000046  add         eax,edx
00000048  imul        edx,dword ptr [ebp-14h],1D2F2h
0000004f  lea         eax,[eax+edx+00080000h]
00000056  sar         eax,14h
00000059  mov         byte ptr [esi],al


当然,如果循环中的代码复杂一些,这个就不一定了。

YCbCr转为RGB空间的代码:

public static void ToRGB(byte* From, byte* To, int Length = 1)
{
if (Length < 1) return;
byte* End = From + Length * 3;
int Red, Green, Blue;
int Y, Cb, Cr;
while (From != End)
{
Y = *From; Cb = *(From + 1)-128; Cr = *(From + 2)-128;
Red = Y + ((RGBRCrI * Cr + HalfShiftValue) >> Shift);
Green = Y + ((RGBGCbI * Cb + RGBGCrI * Cr+ HalfShiftValue) >> Shift);
Blue = Y + ((RGBBCbI * Cb + HalfShiftValue) >> Shift);
if (Red > 255) Red = 255; else if (Red < 0) Red = 0;
if (Green > 255) Green = 255; else if (Green < 0) Green = 0;    // 编译后应该比三目运算符的效率高
if (Blue > 255) Blue = 255; else if (Blue < 0) Blue = 0;
*To = (byte)Blue;                                               // 由于不是一一对应的,需要判断是否越界
*(To + 1) = (byte)Green;
*(To + 2) = (byte)Red;
From += 3;
To += 3;
}
}


实际中这种逆变换用的不多。

照例给出一些转换效果:



YCbCr综合图:



Y分量:



Cb分量:



Cr分量:



在皮肤识别方面,常用YCbCr空间的数据进行分析,从上面几个图中也可以看出 ,肤色在CbCr有着一定的集聚性,这个在日后的文章中再说。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: