您的位置:首页 > 产品设计 > UI/UE

Java中HashMap与HashTable,StringBuilder与StringBuffer的区别

2012-10-28 13:38 344 查看
说一个几个月前遇到的一个面试题,当时没答出来,被刷下来了,后来后悔不已。但是归根结底就是我的Java基础还是欠缺。今天在项目中再次遇到,我们就来回顾一下。Java中HashMap与HashTable的区别:Hashtable和HashMap类有三个重要的不同之处。第一个不同主要是历史原因。Hashtable是基于陈旧的Dictionary类的,HashMap是Java 1.2引进的Map接口的一个实现。      也许最重要的不同是Hashtable的方法是同步的,而HashMap的方法不是。 这就意味着,虽然你可以不用采取任何特殊的行为就可以在一个多线程的应用程序中用一个Hashtable,但你必须同样地为一个HashMap提供外同步。一个方便的方法就是利用Collections类的静态的synchronizedMap()方法,它创建一个线程安全的Map对象,并把它作为一个封装的对象来返回。这个对象的方法可以让你同步访问潜在的HashMap。这么做的结果就是当你不需要同步时,你不能切断Hashtable中的同步(比如在一个单线程的应用程序中),而且同步增加了很多处理费用。       第三点不同是,只有HashMap可以让你将空值作为一个表的条目的key或value。 HashMap中只有一条记录可以是一个空的key,但任意数量的条目可以是空的value。这就是说,如果在表中没有发现搜索键,或者如果发现了搜索键,但它是一个空的值,那么get()将返回null。如果有必要,用containKey()方法来区别这两种情况。      一些资料建议,当需要同步时,用Hashtable,反之用HashMap。但是,因为在需要时,HashMap可以被同步,HashMap的功能比Hashtable的功能更多,而且它不是基于一个陈旧的类的,所以有人认为,在各种情况下,HashMap都优先于Hashtable。       关于Properties   有时侯,你可能想用一个hashtable来映射key的字符串到value的字符串。DOS、Windows和Unix中的环境字符串就有一些例子,如key的字符串PATH被映射到value的字符串C:\WINDOWS;C:\WINDOWS\SYSTEM。Hashtables是表示这些的一个简单的方法,但Java提供了另外一种方法。      Java.util.Properties类是Hashtable的一个子类,设计用于String keys和values。Properties对象的用法同Hashtable的用法相象,但是类增加了两个节省时间的方法,你应该知道。      Store()方法把一个Properties对象的内容以一种可读的形式保存到一个文件中。Load()方法正好相反,用来读取文件,并设定Properties对象来包含keys和values。      注意,因为Properties扩展了Hashtable,你可以用超类的put()方法来添加不是String对象的keys和values。这是不可取的。另外,如果你将store()用于一个不包含String对象的Properties对象,store()将失败。作为put()和get()的替代,你应该用setProperty()和getProperty(),它们用String参数。      好了,我希望你现在可以知道如何用hashtables来加速你的处理了。我们再来看下JavaAPI中是怎么说的。

java.util类 HashMap<K,V>

java.lang.Object
java.util.AbstractMap<K,V>
java.util.HashMap<K,V>
类型参数:
K
- 此映射所维护的键的类型
V
- 所映射值的类型所有已实现的接口: Serializable, Cloneable, Map<K,V>直接已知子类: LinkedHashMap, PrinterStateReasons
public class HashMap<K,V>extends AbstractMap<K,V>implements Map<K,V>, Cloneable, Serializable
基于哈希表的 Map 接口的实现。此实现提供所有可选的映射操作,并允许使用 null 值和 null  键。(除了非同步和允许使用 null 之外,HashMap 类与 Hashtable  大致相同。)此类不保证映射的顺序,特别是它不保证该顺序恒久不变。此实现假定哈希函数将元素适当地分布在各桶之间,可为基本操作(get 和 put)提供稳定的性能。迭代  collection 视图所需的时间与 HashMap  实例的“容量”(桶的数量)及其大小(键-值映射关系数)成比例。所以,如果迭代性能很重要,则不要将初始容量设置得太高(或将加载因子设置得太低)。HashMap 的实例有两个参数影响其性能:初始容量加载因子容量  是哈希表中桶的数量,初始容量只是哈希表在创建时的容量。加载因子  是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash  操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数。通常,默认加载因子 (.75) 在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查询成本(在大多数  HashMap 类的操作中,包括 get 和 put  操作,都反映了这一点)。在设置初始容量时应该考虑到映射中所需的条目数及其加载因子,以便最大限度地减少 rehash  操作次数。如果初始容量大于最大条目数除以加载因子,则不会发生 rehash 操作。如果很多映射关系要存储在 HashMap 实例中,则相对于按需执行自动的 rehash  操作以增大表的容量来说,使用足够大的初始容量创建它将使得映射关系能更有效地存储。注意,此实现不是同步的。如果多个线程同时访问一个哈希映射,而其中至少一个线程从结构上修改了该映射,则它必须  保持外部同步。(结构上的修改是指添加或删除一个或多个映射关系的任何操作;仅改变与实例已经包含的键关联的值不是结构上的修改。)这一般通过对自然封装该映射的对象进行同步操作来完成。如果不存在这样的对象,则应该使用  
Collections.synchronizedMap
方法来“包装”该映射。最好在创建时完成这一操作,以防止对映射进行意外的非同步访问,如下所示:
Map m = Collections.synchronizedMap(new HashMap(...));
由所有此类的“collection 视图方法”所返回的迭代器都是快速失败 的:在迭代器创建之后,如果从结构上对映射进行修改,除非通过迭代器本身的 remove 方法,其他任何时间任何方式的修改,迭代器都将抛出
ConcurrentModificationException
。因此,面对并发的修改,迭代器很快就会完全失败,而不冒在将来不确定的时间发生任意不确定行为的风险。注意,迭代器的快速失败行为不能得到保证,一般来说,存在非同步的并发修改时,不可能作出任何坚决的保证。快速失败迭代器尽最大努力抛出 ConcurrentModificationException。因此,编写依赖于此异常的程序的做法是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测程序错误。此类是 Java Collections Framework 的成员。

java.util类 Hashtable<K,V>

java.lang.Objectjava.util.Dictionary<K,V>java.util.Hashtable<K,V>
所有已实现的接口: Serializable, Cloneable, Map<K,V>直接已知子类: Properties, UIDefaults
public class Hashtable<K,V>extends Dictionary<K,V>implements Map<K,V>, Cloneable, Serializable
此类实现一个哈希表,该哈希表将键映射到相应的值。任何非 
null
对象都可以用作键或值。为了成功地在哈希表中存储和获取对象,用作键的对象必须实现
hashCode
方法和
equals
方法。
Hashtable
的实例有两个参数影响其性能:初始容量加载因子容量 是哈希表中 的数量,初始容量 就是哈希表创建时的容量。注意,哈希表的状态为 open:在发生“哈希冲突”的情况下,单个桶会存储多个条目,这些条目必须按顺序搜索。加载因子 是对哈希表在其容量自动增加之前可以达到多满的一个尺度。初始容量和加载因子这两个参数只是对该实现的提示。关于何时以及是否调用 rehash 方法的具体细节则依赖于该实现。通常,默认加载因子(.75)在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查找某个条目的时间(在大多数 Hashtable 操作中,包括 get 和 put 操作,都反映了这一点)。初始容量主要控制空间消耗与执行
rehash
操作所需要的时间损耗之间的平衡。如果初始容量大于 Hashtable 所包含的最大条目数除以加载因子,则永远 不会发生
rehash
操作。但是,将初始容量设置太高可能会浪费空间。如果很多条目要存储在一个
Hashtable
中,那么与根据需要执行自动 rehashing 操作来增大表的容量的做法相比,使用足够大的初始容量创建哈希表或许可以更有效地插入条目。下面这个示例创建了一个数字的哈希表。它将数字的名称用作键:
[code]Hashtable<String, Integer> numbers      = new Hashtable<String, Integer>();    numbers.put("one", 1);    numbers.put("two", 2);    numbers.put("three", 3);
要获取一个数字,可以使用以下代码:
[code]Integer n = numbers.get("two");      if (n != null) {          System.out.println("two = " + n);      }    
}[/code]由所有类的“collection 视图方法”返回的 collection 的 iterator 方法返回的迭代器都是快速失败 的:在创建 Iterator 之后,如果从结构上对 Hashtable 进行修改,除非通过 Iterator 自身的 remove 方法,否则在任何时间以任何方式对其进行修改,Iterator 都将抛出
ConcurrentModificationException
。因此,面对并发的修改,Iterator 很快就会完全失败,而不冒在将来某个不确定的时间发生任意不确定行为的风险。由 Hashtable 的键和元素方法返回的 Enumeration 不 是快速失败的。注意,迭代器的快速失败行为无法得到保证,因为一般来说,不可能对是否出现不同步并发修改做出任何硬性保证。快速失败迭代器会尽最大努力抛出 ConcurrentModificationException。因此,为提高这类迭代器的正确性而编写一个依赖于此异常的程序是错误做法:迭代器的快速失败行为应该仅用于检测程序错误。从Java 2 平台 v1.2起,此类就被改进以实现
Map
接口,使它成为 Java Collections Framework 中的一个成员。不像新的 collection 实现,
Hashtable
是同步的StringBuilder与StringBuffer的区别1. 在执行速度方面的比较:StringBuilder > StringBuffer2. StringBuffer与StringBuilder,他们是字符串变量,是可改变的对象,每当我们用它们对字符串做操作时,实际上是在一个对象上操作的,不像String一样创建一些对象进行操作,所以速度就快了。3. StringBuilder:线程非安全的   StringBuffer:线程安全的 当我们在字符串缓冲去被多个线程使用是,JVM不能保证StringBuilder的操作是安全的,虽然他的速度最快,但是可以保证StringBuffer是可以正确操作的。当然大多数情况下就是我们是在单线程下进行的操作,所以大多数情况下是建议用StringBuilder而不用StringBuffer的,就是速度的原因。对于三者使用的总结:1.如果要操作少量的数据用 = String       2.单线程操作字符串缓冲区 下操作大量数据 = StringBuilder       3.多线程操作字符串缓冲区 下操作大量数据 = StringBuffer
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
相关文章推荐