您的位置:首页 > 其它

pthread_create线程创建的过程剖析

2012-10-25 10:56 417 查看
概述
在Linux环境下,[b]pthread库提供的[/b]pthread_create()API函数,用于创建一个线程。线程创建失败时,它可能会返回[b]ENOMEMEAGAIN。这篇文章主要讨论线程创建过程中碰到的一些问题和解决方法。[/b]
创建线程
首先,本文用的实例代码example.c:
/* example.c*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
void thread(void)

{

    int i;

    for(i=0;i<3;i++)

        printf("This is a pthread.\n");

    sleep(30);

}

int main(int argc,char **argv)

{

    pthread_t id;

    int i,ret;

    ret=pthread_create(&id,NULL,(void *) thread,NULL);

    if(ret!=0){

        printf ("Create pthread error!\n");

        exit (1);

    }

    for(i=0;i<3;i++)

        printf("This is the main process.\n");

    pthread_join(id,NULL);

    return 0;

}
 
编译,执行下面命令:
# example.c -lpthread -o example -g
 
用strace工具跟踪线程创建的过程:
# strace ./example
 
Strace工具输出:
getrlimit(RLIMIT_STACK, {rlim_cur=10240*1024, rlim_max=RLIM_INFINITY}) = 0

uname({sys="Linux", node="yjye", ...})  = 0
mmap2(NULL, 10489856, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_STACK, -1, 0) = 0xb6d1c000

brk(0)                                  = 0x90e0000

brk(0x9101000)                          = 0x9101000
mprotect(0xb6d1c000, 4096, PROT_NONE)  = 0
clone(child_stack=0xb771c494, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE

_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0xb771cbd8, {entry_number:6, base_addr:0xb771cb70, limit:1048575, seg_32bi

t:1, contents:0, read_exec_only:0, limit_in_pages:1, seg_not_present:0, useable:1}, child_tidptr=0xb771cbd8) = 17209

fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0
 
由上表中的输出可以看出创建线程过程中的调用步骤:
通过系统调用getrlimit()获取线程栈的大小(参数中的RLIMIT_STACK),在我的环境里(CentOS6),缺省值是10M。
调用mmap2()分配内存,大小为10489856字节,合10244K,比栈空间大了4K。返回0xb6d1c000。
调用mprotect(),设置个内存页的保护区(大小为4K),页面起始地址为0xb6d1c000。这个页面用于监测栈溢出,如果对这片内存有读写操作,那么将会触发一个SIGSEGV信号。下面布局图中的红色区域既是。
调用clone()创建线程。调用的第一个参数是一个地址:栈底的地址(这里具体为0xb771c494)。栈空间的内存使用,是从高位内存开始的。
从/proc/<pid>/smaps文件里,我们可以清楚地看到栈内存的映射情况:
090e0000-09101000 rw-p 00000000 00:00 0         [heap]

Size:                132 kB

Rss:                   4 kB

Pss:                   4 kB

Shared_Clean:          0 kB

Shared_Dirty:          0 kB

Private_Clean:         0 kB

Private_Dirty:         4 kB

Referenced:            4 kB

Swap:                  0 kB

KernelPageSize:        4 kB

MMUPageSize:           4 kB
b6d1c000-b6d1d000 ---p 00000000 00:00 0    #线程栈溢出监测区域

Size:                  4 kB

Rss:                   0 kB

Pss:                   0 kB

Shared_Clean:          0 kB

Shared_Dirty:          0 kB

Private_Clean:         0 kB

Private_Dirty:         0 kB

Referenced:            0 kB

Swap:                  0 kB

KernelPageSize:        4 kB

MMUPageSize:           4 kB
b6d1d000-b771e000 rw-p 00000000 00:00 0    #线程栈

Size:              10244 kB

Rss:                   8 kB

Pss:                   8 kB

Shared_Clean:          0 kB

Shared_Dirty:          0 kB

Private_Clean:         0 kB

Private_Dirty:         8 kB

Referenced:            8 kB

Swap:                  0 kB

KernelPageSize:        4 kB

MMUPageSize:           4 kB
 
从上面的映射文件的深蓝色部分中,我们看到,栈的空间总共为10244Kb,内存段是从b6d1d000到b771e000。从strace的输出中,我们看到栈底的地址为0xb771c494,那么,从0xb771c494到b771e000这段内存是做什么用的呢?它就是线程的TCB(thread's
control block)和TLS区域( thread's local storage)。具体的线程内存空间布局如下:



GLIBC2.5与2.8
    研究GLIBC2.5和2.8里的pthread_create()相关代码,会发现在mmap()调用失败并返回ENOMEM时,作了点变动,新版里替换了错误码。
V2.5相关代码.../nptl/allocatestack.c:
mem = mmap (NULL, size, prot,

              MAP_PRIVATE | MAP_ANONYMOUS | ARCH_M
4000
AP_FLAGS, -1, 0);

      if (__builtin_expect (mem == MAP_FAILED, 0))

        {

#ifdef ARCH_RETRY_MMAP

          mem = ARCH_RETRY_MMAP (size);

          if (__builtin_expect (mem == MAP_FAILED, 0))

#endif
        return errno;
        }
 
V2.8里的.../nptl/allocatestack.c:
mem = mmap (NULL, size, prot,

              MAP_PRIVATE | MAP_ANONYMOUS | ARCH_MAP_FLAGS, -1, 0);

      if (__builtin_expect (mem == MAP_FAILED, 0))

        {

#ifdef ARCH_RETRY_MMAP

          mem = ARCH_RETRY_MMAP (size, prot);

          if (__builtin_expect (mem == MAP_FAILED, 0))

#endif

            {
              if (errno == ENOMEM)

                errno = EAGAIN;

              return errno;
            }

        }
 
如上面的代码片段所示,在V2.5,简单地将mmap()调用结果返回给用户,而在V2.8里,如果mmap()返回ENOMEM,那么GLIBC会将错误码改成EAGAIN再返回。
 
为什么pthread_create()会调用失败?
随着运行中的线程数量的增大,pthread_create()失败的可能性也会增大。因为这会使分配给线程的内存空间(比如说线程栈)累积太多,导致mmap()系统调用失败。
比如说,/proc/<pid>/smaps里有这样一个内存映射片段:
[...]

7eb3d000-7f33c000 rw-p 7eb3d000 00:00 0

Size:               8188 kB

Rss:                  12 kB

Pss:                  12 kB

Shared_Clean:          0 kB

Shared_Dirty:          0 kB

Private_Clean:         0 kB

Private_Dirty:        12 kB

Referenced:           12 kB

Swap:                  0 kB

7f8f5000-7f90a000 rw-p 7ffeb000 00:00 0          [stack]

Size:                 84 kB

Rss:                  16 kB

Pss:                  16 kB

Shared_Clean:          0 kB

Shared_Dirty:          0 kB

Private_Clean:         0 kB

Private_Dirty:        16 kB

Referenced:           16 kB

Swap:                  0 kB
 
可用的内存空间是最后一个内存段和[stack]标签之间的空间:0x7F8F5000 - 0x7F33C000 = 0x5B9000 = 6000640字节(也就是6MB)。按缺省配置,小于一个线程栈的空间(10MB)。这时再创建线程就要失败。

解决方法
   通常情况下,缺省10M的线程栈空间显然是太大了,所以建议通过调用pthread_attr_setstacksize()API来改变线程栈的大小。比如说以下代码片段:
//-------------------------------------------------------

// Name   : create_thd

// Usage  : Create a thread

// Return : 0, if OK

//          -1, if error (errno is set)

//-------------------------------------------------------

static int create_thd(

                    void       *thd_par,  // Thread parameters

                    size_t      stack_sz,

                    void       *(*entry)(void *),

                    pthread_t  *pThreadId // Thread identifier

                     )

{

pthread_attr_t      attr;

int                 rc = 0;

int                 err_sav;

  // Check the parameters

  if (!pThreadId)

  {

    fprintf(stderr, "NULL thread id\n");

    errno = EINVAL;

    return -1;

  }

  memset(&attr, 0, sizeof(attr));

  errno = pthread_attr_init(&attr);

  if (0 != errno)

  {

    err_sav = errno;

    fprintf(stderr, "pthread_attr_init() failed (errno = %d)\n", errno);

    errno = err_sav;

    return -1;

  }

  errno = pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

  if (0 != errno)

  {

    err_sav = errno;

    fprintf(stderr, "pthread_attr_setscope() failed (errno = %d)\n", errno);

    errno = err_sav;

    rc = -1;

    goto err;

  }

  errno = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

  if (0 != errno)

  {

    err_sav = errno;

    fprintf(stderr, "pthread_attr_setdetachstate() failed (errno = %d)\n", errno);

    errno = err_sav;

    rc = -1;

    goto err;

  }

  // Set the stack size

  errno = pthread_attr_setstacksize(&attr, stack_sz);

  if (0 != errno)

  {

    err_sav = errno;

    fprintf(stderr, "Error %d on pthread_attr_setstacksize()\n", errno);

    errno = err_sav;

    rc = -1;

    goto err;

  }


  // Thread creation

  errno = pthread_create(pThreadId,

                         &attr,

                         entry,

                         thd_par);

  if (0 != errno)

  {

    err_sav = errno;

    fprintf(stderr, "pthread_create() failed (errno = %m - %d)\n", errno);

    errno = err_sav;

    rc = -1;

    goto err;

  }

  goto ok;

err:

ok:

  // The following calls will alter errno

  err_sav = errno;

  errno = pthread_attr_destroy(&attr);

  if (0 != errno)

  {

    fprintf(stderr, "pthread_attr_destroy() failed (errno = %d)\n", errno);

    rc = -1;

  }

  errno = err_sav;

  return rc;

} // create_thd
 
符号版本的链接问题
     回到我们前面的示例代码中来,在里面,我们在主进程里直接调用pthread_create()函数。我们来看一下它的链接情况:
[root@yjye yeyj]# nm example | grep pthread

         U pthread_create@@GLIBC_2.1

         U pthread_join@@GLIBC_2.0
 
而上次在调试Freeswitch时,发现配置的栈大小居然不生效,所有子线程全部继承父线程的大小。这是怎么回事呢?Freeswitch调用的是apr封装后的接口,那我们看下apr的链接符号:
[root@yjye .libs]# nm libapr-1.a | grep pthread

         U pthread_rwlock_destroy

         U pthread_rwlock_init

         U pthread_rwlock_rdlock

         U pthread_rwlock_tryrdlock

         U pthread_rwlock_trywrlock

         U pthread_rwlock_unlock

         U pthread_rwlock_wrlock

         U pthread_mutex_destroy

         U pthread_mutex_init

         U pthread_mutex_lock

         U pthread_mutex_trylock

         U pthread_mutex_unlock

         U pthread_mutexattr_destroy

         U pthread_mutexattr_init

         U pthread_mutexattr_settype

         U pthread_cond_broadcast

         U pthread_cond_destroy

         U pthread_cond_init

         U pthread_cond_signal

         U pthread_cond_timedwait

         U pthread_cond_wait

00000080 d mutex_proc_pthread_methods

00000a10 t proc_mutex_proc_pthread_acquire

00000990 t proc_mutex_proc_pthread_cleanup

00000a50 t proc_mutex_proc_pthread_create

00000960 t proc_mutex_proc_pthread_release

         U pthread_mutex_destroy

         U pthread_mutex_init

         U pthread_mutex_lock

         U pthread_mutex_unlock

         U pthread_mutexattr_destroy

         U pthread_mutexattr_init

         U pthread_mutexattr_setprotocol

         U pthread_mutexattr_setpshared

         U pthread_mutexattr_setrobust_np

         U pthread_attr_destroy

         U pthread_attr_getdetachstate

         U pthread_attr_init

         U pthread_attr_setdetachstate

         U pthread_attr_setguardsize

         U pthread_attr_setstacksize

         U pthread_create

         U pthread_detach

         U pthread_exit

         U pthread_join

         U pthread_once

         U pthread_self

         U pthread_sigmask

         U pthread_getspecific

         U pthread_key_create

         U pthread_key_delete

         U pthread_setspecific
   和前面相比,好像符号后面少了e@@GLIBC_2.1或者e@@GLIBC_2.0。通过GDB跟踪,发现最终调用的是pthread_join@@GLIBC_2.0。弄出两个版本来了。通过第三库调用pthread库,经常会出现这种情况。
我们看2.0的代码,打开文件…//nptl/pthread_create.c:
int

__pthread_create_2_0 (newthread, attr, start_routine, arg)

     pthread_t *newthread;

     const pthread_attr_t *attr;

     void *(*start_routine) (void *);

     void *arg;

{

  /* The ATTR attribute is not really of type `pthread_attr_t *'.  It has

     the old size and access to the new members might crash the program.

     We convert the struct now.  */

  struct pthread_attr new_attr;

  if (attr != NULL)

    {

      struct pthread_attr *iattr = (struct pthread_attr *) attr;

      size_t ps = __getpagesize ();

      /* Copy values from the user-provided attributes.  */

      new_attr.schedparam = iattr->schedparam;

      new_attr.schedpolicy = iattr->schedpolicy;

      new_attr.flags = iattr->flags;

      /* Fill in default values for the fields not present in the old

     implementation.  */

      new_attr.guardsize = ps;

      new_attr.stackaddr = NULL;

      new_attr.stacksize = 0;


      new_attr.cpuset = NULL;

      /* We will pass this value on to the real implementation.  */

      attr = (pthread_attr_t *) &new_attr;

    }

  return __pthread_create_2_1 (newthread, attr, start_routine, arg);

}
 
很明显,如果链接到老版本,那么设置栈大小的属性完全被忽略掉了。
怎么解决这个问题呢?强制指定链接的符号,让它调用GLIBC_2.1。感谢Linux提供的系统调用,dlvsym()正好可以解决这个问题:
#include <dlfcn.h>

………

typedef int (*lxb_pcreate_t)(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine)(void*), void *arg);

static lxb_pcreate_t lxb_pthread_create;

[...]

   void *pSym;

  // Get the version GLIBC_2.1 of pthread_create() symbol

  pSym = dlvsym(RTLD_DEFAULT, "pthread_create", "GLIBC_2.1");

  if (NULL == pSym)

  {

    lxb_pthread_create = pthread_create;

  }

  else

  {

    lxb_pthread_create = (lxb_pcreate_t)pSym;

    if (pSym != (void *)pthread_create)

    {

      LXB_PRINTF("Unexpected version of pthread_create() symbol ==> Forced to GLIBC_2.1\n");

    }

  }
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: