您的位置:首页 > 运维架构 > Linux

linux高级字符设备驱动之 四 poll方法(select多路监控原理与实现)

2012-05-17 10:16 706 查看
1、什么是Poll方法,功能是什么?



2、Select系统调用(功能)

Select系统调用用于多路监控,当没有一个文件满足要求时,select将阻塞调用进程。

int select(int maxfd, fd_set *readfds, fd_set *writefds, fe_set *exceptfds, const struct timeval *timeout)

Select系统调用(参数)

1)Maxfd:

文件描述符的范围,比待检测的最大文件描述符大1

2)Readfds:

被读监控的文件描述符集

3)Writefds:

被写监控的文件描述符集

4)Exceptfds:

被异常监控的文件描述符集;

5)Timeout:

定时器,Timeout取不同的值,该调用有不同的表现:

1>Timeout值为0,不管是否有文件满足要求,都立刻返回,无文件满足要求返回0,有文件满足要求返回一个正值。

2>Timeout为NULL,select将阻塞进程,直到某个文件满足要求

3>Timeout 值 为 正 整 数 , 就 是 等 待 的 最 长 时 间 , 即select在timeout时间内阻塞进程。

3、Select系统调用(返回值)

Select调用返回时,返回值有如下情况:

1)正常情况下返回满足要求的文件描述符个数;

2)经过了timeout等待后仍无文件满足要求,返回值为0;

3)如果select被某个信号中断,它将返回-1并设置errno为EINTR。

4)如果出错,返回-1并设置相应的errno。

4、Select系统调用(使用方法)

1)将要监控的文件添加到文件描述符集

2)调用Select开始监控

3)判断文件是否发生变化

系统提供了4个宏对描述符集进行操作:

#include <sys/select.h>

void FD_SET(int fd, fd_set *fdset)

void FD_CLR(int fd, fd_set *fdset)

void FD_ZERO(fd_set *fdset)

void FD_ISSET(int fd, fd_set *fdset)

宏FD_SET将文件描述符fd添加到文件描述符集fdset中;

宏FD_CLR从文件描述符集fdset中清除文件描述符fd;

宏FD_ZERO清空文件描述符集fdset;

在调用select后使用FD_ISSET来检测文件描述符集fdset中的文件fd发生了变化。

FD_ZERO(&fds); //清空集合

FD_SET(fd1,&fds); //设置描述符

FD_SET(fd2,&fds); //设置描述符

maxfdp=fd1+1; //描述符最大值加1,假设fd1>fd2

switch(select(maxfdp,&fds,NULL,NULL,&timeout))

case -1: exit(-1);break; //select错误,退出程序

case 0:break;

default:

if(FD_ISSET(fd1,&fds)) //测试fd1是否可读

5、poll方法

应用程序常常使用select系统调用,它可能会阻塞进程。这个调用由驱动的 poll 方法实现,原型为:unsigned int (*poll)(struct file *filp,poll_table *wait)

Poll设备方法负责完成:

1)使用poll_wait将等待队列添加到poll_table中。

2)返回描述设备是否可读或可写的掩码。

位掩码

1>POLLIN 设备可读

2>POLLRDNORM数据可读

3>POLLOUT\设备可写

4>POLLWRNORM数据可写

设备可读通常返回(POLLIN|POLLRDNORM )

设备可写通常返回(POLLOUT|POLLWRNORM )

6、范例

static unsigned int mem_poll(struct file *filp,poll_table *wait)

{

struct scull_pipe *dev =filp->private_data;

unsigned int mask =0;

/* 把等待队列添加到poll_table */

poll_wait(filp,&dev->inq,wait);

/*返回掩码*/

if (有数据可读)

mask = POLLIN |POLLRDNORM;/*设备可读*/

return mask;

}

7、工作原理

Poll方法只是做一个登记,真正的阻塞发生在select.c 中的 do_select函数。

8、实例分析

1)poll型设备驱动memdev.h源码

#ifndef _MEMDEV_H_

#define _MEMDEV_H_

#ifndef MEMDEV_MAJOR

#define MEMDEV_MAJOR 0 /*预设的mem的主设备号*/

#endif

#ifndef MEMDEV_NR_DEVS

#define MEMDEV_NR_DEVS 2 /*设备数*/

#endif

#ifndef MEMDEV_SIZE

#define MEMDEV_SIZE 4096

#endif

/*mem设备描述结构体*/

struct mem_dev

{

char *data;

unsigned long size;

wait_queue_head_t inq;

};

#endif /* _MEMDEV_H_ */

2)Poll型设备驱动memdev.c源码

#include <linux/module.h>

#include <linux/types.h>

#include <linux/fs.h>

#include <linux/errno.h>

#include <linux/mm.h>

#include <linux/sched.h>

#include <linux/init.h>

#include <linux/cdev.h>

#include <asm/io.h>

#include <asm/system.h>

#include <asm/uaccess.h>

#include <linux/poll.h>

#include "memdev.h"

static mem_major = MEMDEV_MAJOR;

bool have_data = false; /*表明设备有足够数据可供读*/

module_param(mem_major, int, S_IRUGO);

struct mem_dev *mem_devp; /*设备结构体指针*/

struct cdev cdev;

/*文件打开函数*/

int mem_open(struct inode *inode, struct file *filp)

{

struct mem_dev *dev;

/*获取次设备号*/

int num = MINOR(inode->i_rdev);

if (num >= MEMDEV_NR_DEVS)

return -ENODEV;

dev = &mem_devp[num];

/*将设备描述结构指针赋值给文件私有数据指针*/

filp->private_data = dev;

return 0;

}

/*文件释放函数*/

int mem_release(struct inode *inode, struct file *filp)

{

return 0;

}

/*读函数*/

static ssize_t mem_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)

{

unsigned long p = *ppos;

unsigned int count = size;

int ret = 0;

struct mem_dev *dev = filp->private_data; /*获得设备结构体指针*/

/*判断读位置是否有效*/

if (p >= MEMDEV_SIZE)

return 0;

if (count > MEMDEV_SIZE - p)

count = MEMDEV_SIZE - p;

while (!have_data) /* 没有数据可读,考虑为什么不用if,而用while */

{

if (filp->f_flags & O_NONBLOCK)

return -EAGAIN;

wait_event_interruptible(dev->inq,have_data);

}

/*读数据到用户空间*/

if (copy_to_user(buf, (void*)(dev->data + p), count))

{

ret = - EFAULT;

}

else

{

*ppos += count;

ret = count;

printk(KERN_INFO "read %d bytes(s) from %d\n", count, p);

}

have_data = false; /* 表明不再有数据可读 */

/* 唤醒写进程 */

return ret;

}

/*写函数*/

static ssize_t mem_write(struct file *filp, const char __user *buf, size_t size, loff_t *ppos)

{

unsigned long p = *ppos;

unsigned int count = size;

int ret = 0;

struct mem_dev *dev = filp->private_data; /*获得设备结构体指针*/

/*分析和获取有效的写长度*/

if (p >= MEMDEV_SIZE)

return 0;

if (count > MEMDEV_SIZE - p)

count = MEMDEV_SIZE - p;

/*从用户空间写入数据*/

if (copy_from_user(dev->data + p, buf, count))

ret = - EFAULT;

else

{

*ppos += count;

ret = count;

printk(KERN_INFO "written %d bytes(s) from %d\n", count, p);

}

have_data = true; /* 有新的数据可读 */

/* 唤醒读进程 */

wake_up(&(dev->inq));

return ret;

}

/* seek文件定位函数 */

static loff_t mem_llseek(struct file *filp, loff_t offset, int whence)

{

loff_t newpos;

switch(whence) {

case 0: /* SEEK_SET */

newpos = offset;

break;

case 1: /* SEEK_CUR */

newpos = filp->f_pos + offset;

break;

case 2: /* SEEK_END */

newpos = MEMDEV_SIZE -1 + offset;

break;

default: /* can't happen */

return -EINVAL;

}

if ((newpos<0) || (newpos>MEMDEV_SIZE))

return -EINVAL;

filp->f_pos = newpos;

return newpos;

}

unsigned int mem_poll(struct file *filp, poll_table *wait)

{

struct mem_dev *dev = filp->private_data;

unsigned int mask = 0;

/*将等待队列添加到poll_table表中 */

poll_wait(filp, &dev->inq, wait);

if (have_data)

mask |= POLLIN | POLLRDNORM; /* readable */

return mask;

}

/*文件操作结构体*/

static const struct file_operations mem_fops =

{

.owner = THIS_MODULE,

.llseek = mem_llseek,

.read = mem_read,

.write = mem_write,

.open = mem_open,

.release = mem_release,

.poll = mem_poll,

};

/*设备驱动模块加载函数*/

static int memdev_init(void)

{

int result;

int i;

dev_t devno = MKDEV(mem_major, 0);

/* 静态申请设备号*/

if (mem_major)

result = register_chrdev_region(devno, 2, "memdev");

else /* 动态分配设备号 */

{

result = alloc_chrdev_region(&devno, 0, 2, "memdev");

mem_major = MAJOR(devno);

}

if (result < 0)

return result;

/*初始化cdev结构*/

cdev_init(&cdev, &mem_fops);

cdev.owner = THIS_MODULE;

cdev.ops = &mem_fops;

/* 注册字符设备 */

cdev_add(&cdev, MKDEV(mem_major, 0), MEMDEV_NR_DEVS);

/* 为设备描述结构分配内存*/

mem_devp = kmalloc(MEMDEV_NR_DEVS * sizeof(struct mem_dev), GFP_KERNEL);

if (!mem_devp) /*申请失败*/

{

result = - ENOMEM;

goto fail_malloc;

}

memset(mem_devp, 0, sizeof(struct mem_dev));

/*为设备分配内存*/

for (i=0; i < MEMDEV_NR_DEVS; i++)

{

mem_devp[i].size = MEMDEV_SIZE;

mem_devp[i].data = kmalloc(MEMDEV_SIZE, GFP_KERNEL);

memset(mem_devp[i].data, 0, MEMDEV_SIZE);

/*初始化等待队列*/

init_waitqueue_head(&(mem_devp[i].inq));

//init_waitqueue_head(&(mem_devp[i].outq));

}

return 0;

fail_malloc:

unregister_chrdev_region(devno, 1);

return result;

}

/*模块卸载函数*/

static void memdev_exit(void)

{

cdev_del(&cdev); /*注销设备*/

kfree(mem_devp); /*释放设备结构体内存*/

unregister_chrdev_region(MKDEV(mem_major, 0), 2); /*释放设备号*/

}

MODULE_AUTHOR("David Xie");

MODULE_LICENSE("GPL");

module_init(memdev_init);

module_exit(memdev_exit);

3)测试程序app-read.c源码

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/ioctl.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <sys/select.h>

#include <sys/time.h>

#include <errno.h>

int main()

{

int fd;

fd_set rds; //声明描述符集合

int ret;

char Buf[128];

/*初始化Buf*/

strcpy(Buf,"memdev is char dev!");

printf("BUF: %s\n",Buf);

/*打开设备文件*/

fd = open("/dev/memdev0",O_RDWR);

FD_ZERO(&rds); //清空描述符集合

FD_SET(fd, &rds); //设置描述符集合

/*清除Buf*/

strcpy(Buf,"Buf is NULL!");

printf("Read BUF1: %s\n",Buf);

ret = select(fd + 1, &rds, NULL, NULL, NULL);//调用select()监控函数

if (ret < 0)

{

printf("select error!\n");

exit(1);

}

if (FD_ISSET(fd, &rds)) //测试fd1是否可读

read(fd, Buf, sizeof(Buf));

/*检测结果*/

printf("Read BUF2: %s\n",Buf);

close(fd);

return 0;

}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: