您的位置:首页 > 理论基础 > 计算机网络

Linux内核--网络栈实现分析(八)--应用层发送数据(下)

2012-05-09 11:52 471 查看
本文分析基于Linux Kernel 1.2.13
原创作品,转载请标明http://blog.csdn.net/yming0221/article/details/7547826
更多请查看专栏,地址http://blog.csdn.net/column/details/linux-kernel-net.html
作者:闫明
注:标题中的”(上)“,”(下)“表示分析过程基于数据包的传递方向:”(上)“表示分析是从底层向上分析、”(下)“表示分析是从上向下分析。

下面是发送数据的流程:



应用层发送数据包的入口函数是BSD socket层的sock_write()函数,在分析该函数之前,先分析下socket的创建,系统调用sys_socket()对应的BSD socket层函数为sock_socket()
sock_socket()函数
/*
* Perform the socket system call. we locate the appropriate
* family, then create a fresh socket.
*/

static int sock_socket(int family, int type, int protocol)
{
int i, fd;
struct socket *sock;
struct proto_ops *ops;

/* Locate the correct protocol family. */
for (i = 0; i < NPROTO; ++i) //查找对应的协议族
{
if (pops[i] == NULL) continue;
if (pops[i]->family == family)
break;
}

if (i == NPROTO) //查找未果,返回错误
{
return -EINVAL;
}

ops = pops[i];//指针指向该协议族的原型操作函数集

/*
* Check that this is a type that we know how to manipulate and
* the protocol makes sense here. The family can still reject the
* protocol later.
*/

if ((type != SOCK_STREAM && type != SOCK_DGRAM &&
type != SOCK_SEQPACKET && type != SOCK_RAW &&
type != SOCK_PACKET) || protocol < 0)
return(-EINVAL);

/*
* Allocate the socket and allow the family to set things up. if
* the protocol is 0, the family is instructed to select an appropriate
* default.
*/

if (!(sock = sock_alloc())) //获取一个socket,已经完成了socket部分初始化设置
{
printk("NET: sock_socket: no more sockets\n");
return(-ENOSR); /* Was: EAGAIN, but we are out of
system resources! */
}

sock->type = type;
sock->ops = ops;
if ((i = sock->ops->create(sock, protocol)) < 0) //调用INET层函数,inet_create()函数,创建inet层的socket,即sock结构
{
sock_release(sock);
return(i);
}

if ((fd = get_fd(SOCK_INODE(sock))) < 0) //根据sock结构中的inode,分配文件描述符
{
sock_release(sock);
return(-EINVAL);
}

return(fd);
}
该函数的大体功能:
1、分配socket,sock结构,用于BSD和INET层的socket
2、分配inode和file结构,用于文件操作
3、返回文件操作描述符,用于应用程序的使用
其中初始化分配一个socket的方法如下:
/*
* Allocate a socket.
*/

struct socket *sock_alloc(void)
{
struct inode * inode;
struct socket * sock;

inode = get_empty_inode();//获一个空的文件结点
if (!inode)
return NULL;
//文件结点相应字段赋值
inode->i_mode = S_IFSOCK;
inode->i_sock = 1;
inode->i_uid = current->uid;
inode->i_gid = current->gid;

sock = &inode->u.socket_i;//给sicket结构指针赋值,可以看到inode和socket一一对应
sock->state = SS_UNCONNECTED;
sock->flags = 0;
sock->ops = NULL;
sock->data = NULL;
sock->conn = NULL;
sock->iconn = NULL;
sock->next = NULL;
sock->wait = &inode->i_wait;
sock->inode = inode; /* "backlink": we could use pointer arithmetic instead */
sock->fasync_list = NULL;
sockets_in_use++;
return sock;
}
执行完,然后调用INET层的inet_create()函数
/*
* Create an inet socket.
*
* FIXME: Gcc would generate much better code if we set the parameters
* up in in-memory structure order. Gcc68K even more so
*/
//创建inet socket,即sock结构
static int inet_create(struct socket *sock, int protocol)
{
struct sock *sk;
struct proto *prot;
int err;

sk = (struct sock *) kmalloc(sizeof(*sk), GFP_KERNEL);//分配空间
if (sk == NULL)
return(-ENOBUFS);
sk->num = 0;
sk->reuse = 0;
switch(sock->type)
{
case SOCK_STREAM:
case SOCK_SEQPACKET:
.................

case SOCK_DGRAM:
if (protocol && protocol != IPPROTO_UDP)
{
kfree_s((void *)sk, sizeof(*sk));
return(-EPROTONOSUPPORT);
}
protocol = IPPROTO_UDP;
sk->no_check = UDP_NO_CHECK;
prot=&udp_prot;//原型指针指向UDP的原型定义
break;

case SOCK_RAW:
.........................
break;

case SOCK_PACKET:
..........................
break;

default:
kfree_s((void *)sk, sizeof(*sk));
return(-ESOCKTNOSUPPORT);
}
sk->socket = sock;//可以看出sock和socket的对应关系
.................
sk->type = sock->type;
sk->stamp.tv_sec=0;
sk->protocol = protocol;
sk->wmem_alloc = 0;
sk->rmem_alloc = 0;
sk->sndbuf = SK_WMEM_MAX;
sk->rcvbuf = SK_RMEM_MAX;
......................................//sock的初始化

/* this is how many unacked bytes we will accept for this socket. */
sk->max_unacked = 2048; /* needs to be at most 2 full packets. */

/* how many packets we should send before forcing an ack.
if this is set to zero it is the same as sk->delay_acks = 0 */
sk->max_ack_backlog = 0;
sk->inuse = 0;
sk->delay_acks = 0;
skb_queue_head_init(&sk->write_queue);
skb_queue_head_init(&sk->receive_queue);
sk->mtu = 576;
sk->prot = prot;
sk->sleep = sock->wait;
sk->daddr = 0;//远端地址
sk->saddr = 0 /* ip_my_addr() */;//本地地址
sk->err = 0;
sk->next = NULL;
sk->pair = NULL;
sk->send_tail = NULL;//发送链表尾
sk->send_head = NULL;//发送链表头
..............................
skb_queue_head_init(&sk->back_log);//初始化双链表
..................................
sk->ip_tos=0;
sk->ip_ttl=64;
...................................

if (sk->num) //本地端口号不空
{
/*
* It assumes that any protocol which allows
* the user to assign a number at socket
* creation time automatically
* shares.
*/
put_sock(sk->num, sk);//根据端口号将sock结构加入sock表中
sk->dummy_th.source = ntohs(sk->num);
}

if (sk->prot->init) //UDP的初始化函数为空
{
err = sk->prot->init(sk);
if (err != 0)
{
destroy_sock(sk);
return(err);
}
}
return(0);
}
返回文件描述的操作符
/*
* Obtains the first available file descriptor and sets it up for use.
*/
//根据文件inode指针创建文件结构,并返回文件操作的操作符,用于应用程序的使用
static int get_fd(struct inode *inode)
{
int fd;
struct file *file;

/*
* Find a file descriptor suitable for return to the user.
*/

file = get_empty_filp();
if (!file)
return(-1);

for (fd = 0; fd < NR_OPEN; ++fd)
if (!current->files->fd[fd])
break;
if (fd == NR_OPEN)
{
file->f_count = 0;
return(-1);
}

FD_CLR(fd, ¤t->files->close_on_exec);
current->files->fd[fd] = file;
file->f_op = &socket_file_ops;
file->f_mode = 3;
file->f_flags = O_RDWR;
file->f_count = 1;
file->f_inode = inode;
if (inode)
inode->i_count++;
file->f_pos = 0;
return(fd);
}
下面开始正式看发送数据的最顶层函数--sock_write()函数
/*
* Write data to a socket. We verify that the user area ubuf..ubuf+size-1 is
* readable by the user process.
*/

static int sock_write(struct inode *inode, struct file *file, char *ubuf, int size)
{
struct socket *sock;
int err;

if (!(sock = socki_lookup(inode))) //返回inode结构的对应的socket结构
{
printk("NET: sock_write: can't find socket for inode!\n");
return(-EBADF);
}

if (sock->flags & SO_ACCEPTCON)
return(-EINVAL);

if(size<0)
return -EINVAL;
if(size==0)
return 0;

if ((err=verify_area(VERIFY_READ,ubuf,size))<0)
return err;
return(sock->ops->write(sock, ubuf, size,(file->f_flags & O_NONBLOCK)));//调用inet_write()函数
}
inet_write()函数
static int inet_write(struct socket *sock, char *ubuf, int size, int noblock)
{
return inet_send(sock,ubuf,size,noblock,0);
}
inet_send()函数
static int inet_send(struct socket *sock, void *ubuf, int size, int noblock,
unsigned flags)
{
struct sock *sk = (struct sock *) sock->data;//从socket结构中取出sock指针
if (sk->shutdown & SEND_SHUTDOWN)
{
send_sig(SIGPIPE, current, 1);
return(-EPIPE);
}
if(sk->err)
return inet_error(sk);
/* We may need to bind the socket. */
if(inet_autobind(sk)!=0)//自动分配本地端口号,并将sk根据端口号加入sock表中
return(-EAGAIN);
return(sk->prot->write(sk, (unsigned char *) ubuf, size, noblock, flags));//调用udp_write()函数
}

这样系统就会调用传输层(还是以UDP为例)的函数udp_write()来发送数据,这样数据就从应用层到了传输层。下篇分析传输层向网络层的数据传输。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
相关文章推荐