您的位置:首页 > 运维架构 > Linux

Linux Platform Device and Driver,platform_add_devices()->platform_driver_register()

2012-04-02 17:07 561 查看
转自:http://blog.csdn.net/lanmanck/article/details/4455692

从Linux 2.6起引入了一套新的驱动管理和注册机制:Platform_device和Platform_driver。

Linux中大部分的设备驱动,都可以使用这套机制, 设备用Platform_device表示,驱动用Platform_driver进行注册。

Linux platform driver机制和传统的device driver 机制(通过driver_register函数进行注册)相比,一个十分明显的优势在于platform机制将设备本身的资源注册进内核,由内核统一管理,在驱动程序中使用这些资源时通过platform device提供的标准接口进行申请并使用。这样提高了驱动和资源管理的独立性,并且拥有较好的可移植性和安全性(这些标准接口是安全的)。

Platform机制的本身使用并不复杂,由两部分组成:platform_device和platfrom_driver。

通过Platform机制开发发底层驱动的大致流程为: 定义 platform_device -> 注册 platform_device->定义 platform_driver->注册 platform_driver。

首先要确认的就是设备的资源信息,例如设备的地址,中断号等。

在2.6内核中platform设备用结构体platform_device来描述,该结构体定义在kernel/include/linux/platform_device.h中,

struct platform_device {

const char * name;

u32 id;

struct device dev;

u32 num_resources;

struct resource * resource;

};

该结构一个重要的元素是resource,该元素存入了最为重要的设备资源信息,定义在kernel/include/linux/ioport.h中,

struct resource {

const char *name;

unsigned long start, end;

unsigned long flags;

struct resource *parent, *sibling, *child;

};

下面举s3c2410平台的i2c驱动作为例子来说明:

/* arch/arm/mach-s3c2410/devs.c */
/* I2C */
staticstruct resource s3c_i2c_resource[]={
[0]={
.start = S3C24XX_PA_IIC,
.end = S3C24XX_PA_IIC + S3C24XX_SZ_IIC -1,
.flags = IORESOURCE_MEM,
},
[1]={
.start = IRQ_IIC,//S3C2410_IRQ(27)
.end = IRQ_IIC,
.flags = IORESOURCE_IRQ,
}
};


这里定义了两组resource,它描述了一个I2C设备的资源,第1组描述了这个I2C设备所占用的总线地址范围,IORESOURCE_MEM表示第1组描述的是内存类型的资源信息,第2组描述了这个I2C设备的中断号,IORESOURCE_IRQ表示第2组描述的是中断资源信息。设备驱动会根据flags来获取相应的资源信息。

有了resource信息,就可以定义platform_device了:

struct platform_device s3c_device_i2c ={
.name ="s3c2410-i2c",
.id =-1,
.num_resources = ARRAY_SIZE(s3c_i2c_resource),
.resource = s3c_i2c_resource,
};


定义好了platform_device结构体后就可以调用函数platform_add_devices向系统中添加该设备了,之后可以调用platform_device_register()进行设备注册。要注意的是,这里的platform_device设备的注册过程必须在相应设备驱动加载之前被调用,即执行platform_driver_register之前,原因是因为驱动注册时需要匹配内核中所以已注册的设备名。

s3c2410-i2c的platform_device是在系统启动时,在cpu.c里的s3c_arch_init()函数里进行注册的,这个函数申明为arch_initcall(s3c_arch_init);会在系统初始化阶段被调用。

arch_initcall的优先级高于module_init。所以会在Platform驱动注册之前调用。(详细参考include/linux/init.h)

s3c_arch_init函数如下:

/* arch/arm/mach-3sc2410/cpu.c */
staticint __init s3c_arch_init(void)
{
int ret;
……
/* 这里board指针指向在mach-smdk2410.c里的定义的smdk2410_board,里面包含了预先定义的I2C Platform_device等. */
if(board !=NULL){
struct platform_device **ptr = board->devices;
int i;

for(i = 0; i < board->devices_count; i++, ptr++){
ret = platform_device_register(*ptr);    //在这里进行注册

if(ret){
printk(KERN_ERR "s3c24xx: failed to add board device %s (%d) @%p/n",(*ptr)->name,
ret,*ptr);
}
}
/* mask any error, we may not need all these board
* devices */
ret = 0;
}
return ret;
}


同时被注册还有很多其他平台的platform_device,详细查看arch/arm/mach-s3c2410/mach-smdk2410.c里的smdk2410_devices结构体。

驱动程序需要实现结构体struct platform_driver,参考drivers/i2c/busses

/* device driver for platform bus bits */


staticstruct platform_driver s3c2410_i2c_driver ={
.probe = s3c24xx_i2c_probe,
.remove= s3c24xx_i2c_remove,
.resume = s3c24xx_i2c_resume,
.driver ={
.owner = THIS_MODULE,
.name ="s3c2410-i2c",
},
};


在驱动初始化函数中调用函数platform_driver_register()注册platform_driver,需要注意的是s3c_device_i2c结构中name元素和s3c2410_i2c_driver结构中driver.name必须是相同的,这样在platform_driver_register()注册时会对所有已注册的所有platform_device中的name和当前注册的platform_driver的driver.name进行比较,只有找到相同的名称的platfomr_device才能注册成功,当注册成功时会调用platform_driver结构元素probe函数指针,这里就是s3c24xx_i2c_probe,当进入probe函数后,需要获取设备的资源信息,常用获取资源的函数主要是:

struct resource * platform_get_resource(struct platform_device *dev, unsigned int type, unsigned int num);

根据参数type所指定类型,例如IORESOURCE_MEM,来获取指定的资源。

struct int platform_get_irq(struct platform_device *dev, unsigned int num);

获取资源中的中断号。

下面举s3c24xx_i2c_probe函数分析,看看这些接口是怎么用的。

前面已经讲了,s3c2410_i2c_driver注册成功后会调用s3c24xx_i2c_probe执行,下面看代码:

/* s3c24xx_i2c_probe
*
* called by the bus driver when a suitable device is found
*/

/* drivers/i2c/busses/i2c-s3c2410.c */

staticint s3c24xx_i2c_probe(struct platform_device *pdev)
{
struct s3c24xx_i2c *i2c =&s3c24xx_i2c;
struct resource *res;
int ret;

/* find the clock and enable it */

i2c->dev =&pdev->dev;
i2c->clk = clk_get(&pdev->dev,"i2c");
if(IS_ERR(i2c->clk)){
dev_err(&pdev->dev,"cannot get clock/n");
ret =-ENOENT;
goto out;
}

dev_dbg(&pdev->dev,"clock source %p/n", i2c->clk);
clk_enable(i2c->clk);


/* map the registers */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);/* 获取设备的IO资源地址 */
if(res ==NULL){
dev_err(&pdev->dev,"cannot find IO resource/n");
ret =-ENOENT;
goto out;
}

i2c->ioarea = request_mem_region(res->start,(res->end-res->start)+1, pdev->name);/* 申请这块IO Region */

if(i2c->ioarea ==NULL){
dev_err(&pdev->dev,"cannot request IO/n");
ret =-ENXIO;
goto out;
}

i2c->regs = ioremap(res->start,(res->end-res->start)+1);/* 映射至内核虚拟空间 */

if(i2c->regs ==NULL){
dev_err(&pdev->dev,"cannot map IO/n");
ret =-ENXIO;
goto out;
}

dev_dbg(&pdev->dev,"registers %p (%p, %p)/n", i2c->regs, i2c->ioarea, res);

/* setup info block for the i2c core */
i2c->adap.algo_data = i2c;
i2c->adap.dev.parent =&pdev->dev;

/* initialise the i2c controller */
ret = s3c24xx_i2c_init(i2c);
if(ret != 0)
goto out;

/* find the IRQ for this unit (note, this relies on the init call to ensure no current IRQs pending */

res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);/* 获取设备IRQ中断号 */

if(res ==NULL){
dev_err(&pdev->dev,"cannot find IRQ/n");
ret =-ENOENT;
goto out;
}

ret = request_irq(res->start, s3c24xx_i2c_irq, IRQF_DISABLED,/* 申请IRQ */
pdev->name, i2c);

……

return ret;

}


小思考:

那什么情况可以使用platform driver机制编写驱动呢?

我的理解是只要和内核本身运行依赖性不大的外围设备(换句话说只要不在内核运行所需的一个最小系统之内的设备),相对独立的,拥有各自独自的资源(addresses and IRQs),都可以用platform_driver实现。如:lcd,usb,uart等,都可以用platfrom_driver写,而timer,irq等最小系统之内的设备则最好不用platfrom_driver机制,实际上内核实现也是这样的。

参考资料:

linux-2.6.24/Documentation/driver-model/platform.txt

《platform _device和platform_driver注册过程》

http://blog.chinaunix.net/u2/60011/showart.php?id=1018999
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: