您的位置:首页 > Web前端

31、 2410下DMA驱动源码分析

2011-08-23 17:58 253 查看
首先我们由 kconfig 和 makefile 来获取 DMA 方面相关文件 ( 即源码 ):

Arch/arm/plat-s3c24xx/Dma.c

Arch/arm/mach-s3c2410/Dma.c

以上两个就是操作 DMA 的核心文件 . 我们会逐个的来分析 .

先看初始化函数 , 哪些是初始化函数呢 ? 就是哪些通过 module_init, core_initcall, arch_initcall 等声明的函数 .

首先在 arch/arm/mach-s3c2410/s3c2410.c 下有个初始化函数 .

arch/arm/mach-s3c2410/s3c2410.c:

static int __init s3c2410_core_init(void)

{

return sysdev_class_register(&s3c2410_sysclass);   // 注册一个 class 类

}

core_initcall(s3c2410_core_init);

我们以后会看到 , 后面的 DMA 设备及 DMA 驱动都会注册到该类下面 .

arch/arm/mach-s3c2410/s3c2410.c:

struct sysdev_class s3c2410_sysclass = {

set_kset_name("s3c2410-core"),

};

很明显 , 实际上该类并没有其他什么操作 , 只是为了让 DMA 设备和驱动都注册到这个类下面 , 以使对方可以互相找的到 .

接着在 arch/arm/plat-s3c24xx/Dma.c 下也注册了一个类

arch/arm/plat-s3c24xx/Dma.c:

static int __init s3c24xx_dma_sysclass_init(void)

{

int ret = sysdev_class_register(&dma_sysclass);    // 注册的类

if (ret != 0)

printk(KERN_ERR "dma sysclass registration failed/n");

return ret;

}

struct sysdev_class dma_sysclass = {

set_kset_name("s3c24xx-dma"),

.suspend = s3c2410_dma_suspend,

.resume          = s3c2410_dma_resume,

};

后面我们会看到这 2 个类是如何使用的 . 其中的 dma_sysclass 还有 suspend 和 resume 的操作 , 这些都是电源管理方面的东西 , 我们这里就不分析了 .

接着看在 arch/arm/mach-s3c2410/Dma.c 下注册了 DMA 的驱动程序

arch/arm/mach-s3c2410/Dma.c:

#if defined(CONFIG_CPU_S3C2410)    /* 我们以 2410 为例 */

static struct sysdev_driver s3c2410_dma_driver = {

.add = s3c2410_dma_add,

};

static int __init s3c2410_dma_drvinit(void)

{

// 注册驱动 , 把 s3c2410_dma_driver 注册到 s3c2410_sysclass 类下

return sysdev_driver_register(&s3c2410_sysclass, &s3c2410_dma_driver);

}

arch_initcall(s3c2410_dma_drvinit);

#endif

可以看到这个函数就是把 DMA 的驱动程序注册到 s3c2410_sysclass 的类下面 , 后面我们会看到 DMA 设备是如何找到整个驱动并调用驱动的 add 函数的 .

Drivers/base/sys.c:

int sysdev_driver_register(struct sysdev_class * cls,

struct sysdev_driver * drv)

{

down(&sysdev_drivers_lock);

if (cls && kset_get(&cls->kset)) {

list_add_tail(&drv->entry, &cls->drivers);  // 把驱动注册到类下面的 drivers list 下

/* If devices of this class already exist, tell the driver */

if (drv->add) {  // 如果驱动有 add 函数的话

struct sys_device *dev;

list_for_each_entry(dev, &cls->kset.list, kobj.entry)

drv->add(dev);   // 为该类下的每个设备调用驱动的 add 函数 .

}

} else

list_add_tail(&drv->entry, &sysdev_drivers); // 把驱动注册到类下面的 drivers list 下

up(&sysdev_drivers_lock);

return 0;

}

通过上面这个函数 , 我们就看到了 s3c2410_dma_driver 是如何注册进 s3c2410_sysclass 类的 , 即就是把 s3c2410_dma_driver 挂到 s3c2410_sysclass 下的 drivers 列表下 .

接着我们来看 DMA 设备的注册了 .

Arch/arm/mach-s3c2410/s3c2410.c:

int __init s3c2410_init(void)

{

printk("S3C2410: Initialising architecture/n");

return sysdev_register(&s3c2410_sysdev);   // 注册设备了

}

static struct sys_device s3c2410_sysdev = {

.cls         = &s3c2410_sysclass,

};

这个函数注册了一个系统设备 , 我们看到 , 其实这是个虚拟设备 ( 其实根本就不是个设备 ), 它仅仅是为了要触发 dma 驱动的那个 add 函数 , 所有的 DMA 设备会在那个时候才会真正的注册 . 至于这个函数是怎么调用的问题 , 就由读者自己去分析吧 J , 不过我记得我有文章分析过的哦 .

Drivers/base/sys.c:

int sysdev_register(struct sys_device * sysdev)

{

int error;

struct sysdev_class * cls = sysdev->cls;

if (!cls)

return -EINVAL;

/* Make sure the kset is set */

sysdev->kobj.kset = &cls->kset;

/* But make sure we point to the right type for sysfs translation */

sysdev->kobj.ktype = &ktype_sysdev;

error = kobject_set_name(&sysdev->kobj, "%s%d",

kobject_name(&cls->kset.kobj), sysdev->id);

if (error)

return error;

pr_debug("Registering sys device '%s'/n", kobject_name(&sysdev->kobj));

/* Register the object */

error = kobject_register(&sysdev->kobj);

if (!error) {

struct sysdev_driver * drv;

down(&sysdev_drivers_lock);

/* Generic notification is implicit, because it's that

* code that should have called us.

*/

// 对于我们分析 DMA 来讲 , 更关心的是下面这段代码

/* Notify global drivers */

// 调用所有全局的 sysdev_drivers

list_for_each_entry(drv, &sysdev_drivers, entry) {

if (drv->add)

drv->add(sysdev);

}

/* Notify class auxillary drivers */

// 接着调用具体 class 下面的驱动

list_for_each_entry(drv, &cls->drivers, entry) {

if (drv->add)

drv->add(sysdev);   // 驱动的 add 函数 .

}

up(&sysdev_drivers_lock);

}

return error;

}

我们可以看到 s3c2410_sysdev 的类就是 s3c2410_sysclass, 所以这里找到的驱动就是前面我们注册进 s3c2410_sysclass 的 dma 驱动 , 因此这里的 add 函数就是 s3c2410_dma_add 了 .

Arch/arm/mach-s3c2410/dma.c:

static int s3c2410_dma_add(struct sys_device *sysdev)

{

s3c2410_dma_init();   //DMA 初始化

s3c24xx_dma_order_set(&s3c2410_dma_order);

return s3c24xx_dma_init_map(&s3c2410_dma_sel);

}

真正的 DMA 方面的操作就从这个函数开始了 . 我们一个个函数来看 .

Arch/arm/plat-s3c24xx/dma.c:

int s3c2410_dma_init(void)

{

return s3c24xx_dma_init(4, IRQ_DMA0, 0x40);

}

我们来看下参数 , 第一个参数代表 dma channel 数 ( 参考 2410 data sheet), 第二个参数是 dma 的中断号 , 第三个参数是每个 channel 对应的寄存器基地址与前一个 channel 的寄存器的基地址的偏移 , 即如果第一个 channel 的第一个寄存器的地址是 0x4b000000 则第二个 channel 的第一个寄存器的地址是 0x4b000040,

接着看

Arch/arm/plat-s3c24xx/dma.c:

int __init s3c24xx_dma_init(unsigned int channels, unsigned int irq,

unsigned int stride)

{

struct s3c2410_dma_chan *cp;   // 每个 channel 都由个 s3c2410_dma_chan 表示

int channel;

int ret;

printk("S3C24XX DMA Driver, (c) 2003-2004,2006 Simtec Electronics/n");

dma_channels = channels;   // 保存 channel 的数量

// 把所有 channel 的所有寄存器地址由实地址转换成虚拟地址 .

// 我们驱动中使用的都是虚拟地址 .

dma_base = ioremap(S3C24XX_PA_DMA, stride * channels);

if (dma_base == NULL) {

printk(KERN_ERR "dma failed to remap register block/n");

return -ENOMEM;

}

// 创建一个高速缓冲对象 , 具体可参考 linux 设备驱动程序 III 的第 8 章

dma_kmem = kmem_cache_create("dma_desc",

sizeof(struct s3c2410_dma_buf), 0,

SLAB_HWCACHE_ALIGN,

s3c2410_dma_cache_ctor, NULL);

if (dma_kmem == NULL) {

printk(KERN_ERR "dma failed to make kmem cache/n");

ret = -ENOMEM;

goto err;

}

// 为每个 channel 初始化 .

for (channel = 0; channel < channels;  channel++) {

cp = &s3c2410_chans[channel];    // 全局变量保存每个 channel 的信息 .

memset(cp, 0, sizeof(struct s3c2410_dma_chan));

/* dma channel irqs are in order.. */

cp->number = channel;   //channel 号

cp->irq    = channel + irq;  // 该 channel 的中断号

cp->regs   = dma_base + (channel * stride);   // 该 channel 的寄存器基地址

/* point current stats somewhere */

cp->stats  = &cp->stats_store;    //channel 状态

cp->stats_store.timeout_shortest = LONG_MAX;

/* basic channel configuration */

cp->load_timeout = 1<<18;

printk("DMA channel %d at %p, irq %d/n",

cp->number, cp->regs, cp->irq);

}

return 0;

err:

kmem_cache_destroy(dma_kmem);
1734d

iounmap(dma_base);

dma_base = NULL;

return ret;

}

这个函数就是对每个 channel 进行初始化 , 并把每个 channel 的相关信息保存起来供以后的操作使用 .

接着看下一个函数 :

Arch/arm/plat-s3c24xx/dma.c:

int __init s3c24xx_dma_order_set(struct s3c24xx_dma_order *ord)

{

struct s3c24xx_dma_order *nord = dma_order;   //dma_order 是个全局指针

// 分配内存

if (nord == NULL)

nord = kmalloc(sizeof(struct s3c24xx_dma_order), GFP_KERNEL);

if (nord == NULL) {

printk(KERN_ERR "no memory to store dma channel order/n");

return -ENOMEM;

}

// 保存 ord 信息

dma_order = nord;

memcpy(nord, ord, sizeof(struct s3c24xx_dma_order));

return 0;

}

这个函数主要是分配了一个内存用来保存 order 信息 , 我们来看传进来的参数

Arch/arm/mach-s3c2410/dma.c:

static struct s3c24xx_dma_order __initdata s3c2410_dma_order = {

.channels = {

[DMACH_SDI]     = {

.list  = {

[0]   = 3 | DMA_CH_VALID,

[1]   = 2 | DMA_CH_VALID,

[2]   = 0 | DMA_CH_VALID,

},

},

[DMACH_I2S_IN]       = {

.list  = {

[0]   = 1 | DMA_CH_VALID,

[1]   = 2 | DMA_CH_VALID,

},

},

},

};

注意这个变量用 __initdata 定义了 , 因此它只在初始化的时候存在 , 所以我们有必要分配一块内存来保存它的信息 . 这也是上面那个函数的作用 , 那这个 s3c2410_dma_order 到底有什么作用呢 , 我们看这个结构的解释

Include/asm-arm/plat-s3c24xx/dma.h::

/* struct s3c24xx_dma_order

*

* information provided by either the core or the board to give the

* dma system a hint on how to allocate channels

*/

// 注释说的很明确了吧 , 就是用来指导系统如何分配 dma channel, 因为 2410 下的 4 个 channel 的源跟目的并不是所有的外设都可以使用的 .

struct s3c24xx_dma_order {

struct s3c24xx_dma_order_ch      channels[DMACH_MAX];

};

看完了 s3c24xx_dma_order_set, 我们接着看 s3c24xx_dma_init_map

Arch/arm/plat-s3c24xx/dma.c:

int __init s3c24xx_dma_init_map(struct s3c24xx_dma_selection *sel)

{

struct s3c24xx_dma_map *nmap;

size_t map_sz = sizeof(*nmap) * sel->map_size;

int ptr;

nmap = kmalloc(map_sz, GFP_KERNEL);  // 分配内存

if (nmap == NULL)

return -ENOMEM;

// 保存信息

memcpy(nmap, sel->map, map_sz);

memcpy(&dma_sel, sel, sizeof(*sel));

dma_sel.map = nmap;

// 检查是否正确

for (ptr = 0; ptr < sel->map_size; ptr++)

s3c24xx_dma_check_entry(nmap+ptr, ptr);

return 0;

}

这个函数和 s3c24xx_dma_order_set 的作用一样 , 也是先分配一块内存然后在保存信息 . 我们来看参数 :

Arch/arm/mach-s3c2410/dma.c:

static struct s3c24xx_dma_selection __initdata s3c2410_dma_sel = {

.select            = s3c2410_dma_select,

.dcon_mask    = 7 << 24,

.map              = s3c2410_dma_mappings,

.map_size       = ARRAY_SIZE(s3c2410_dma_mappings),

};

呵呵也是用 __initdata 定义的 , 难怪要重新分配内存并保存起来 , 那这些是什么信息呢 , 我们看到主要就是个 map, 我们接着来看这个 map 中到底存了些什么东西 .

Arch/arm/mach-s3c2410/dma.c:

static struct s3c24xx_dma_map __initdata s3c2410_dma_mappings[] = {

[DMACH_XD0] = {

.name            = "xdreq0",

.channels[0]   = S3C2410_DCON_CH0_XDREQ0 | DMA_CH_VALID,

},

[DMACH_XD1] = {

.name            = "xdreq1",

.channels[1]   = S3C2410_DCON_CH1_XDREQ1 | DMA_CH_VALID,

},

[DMACH_SDI] = {

.name            = "sdi",

.channels[0]   = S3C2410_DCON_CH0_SDI | DMA_CH_VALID,

.channels[2]   = S3C2410_DCON_CH2_SDI | DMA_CH_VALID,

.channels[3]   = S3C2410_DCON_CH3_SDI | DMA_CH_VALID,

.hw_addr.to    = S3C2410_PA_IIS + S3C2410_IISFIFO,

.hw_addr.from       = S3C2410_PA_IIS + S3C2410_IISFIFO,

},

[DMACH_SPI0] = {

.name            = "spi0",

.channels[1]   = S3C2410_DCON_CH1_SPI | DMA_CH_VALID,

.hw_addr.to    = S3C2410_PA_SPI + S3C2410_SPTDAT,

.hw_addr.from       = S3C2410_PA_SPI + S3C2410_SPRDAT,

},

[DMACH_SPI1] = {

.name            = "spi1",

.channels[3]   = S3C2410_DCON_CH3_SPI | DMA_CH_VALID,

.hw_addr.to    = S3C2410_PA_SPI + 0x20 + S3C2410_SPTDAT,

.hw_addr.from       = S3C2410_PA_SPI + 0x20 + S3C2410_SPRDAT,

},

[DMACH_UART0] = {

.name            = "uart0",

.channels[0]   = S3C2410_DCON_CH0_UART0 | DMA_CH_VALID,

.hw_addr.to    = S3C2410_PA_UART0 + S3C2410_UTXH,

.hw_addr.from       = S3C2410_PA_UART0 + S3C2410_URXH,

},

[DMACH_UART1] = {

.name            = "uart1",

.channels[1]   = S3C2410_DCON_CH1_UART1 | DMA_CH_VALID,

.hw_addr.to    = S3C2410_PA_UART1 + S3C2410_UTXH,

.hw_addr.from       = S3C2410_PA_UART1 + S3C2410_URXH,

},

[DMACH_UART2] = {

.name            = "uart2",

.channels[3]   = S3C2410_DCON_CH3_UART2 | DMA_CH_VALID,

.hw_addr.to    = S3C2410_PA_UART2 + S3C2410_UTXH,

.hw_addr.from       = S3C2410_PA_UART2 + S3C2410_URXH,

},

[DMACH_TIMER] = {

.name            = "timer",

.channels[0]   = S3C2410_DCON_CH0_TIMER | DMA_CH_VALID,

.channels[2]   = S3C2410_DCON_CH2_TIMER | DMA_CH_VALID,

.channels[3]   = S3C2410_DCON_CH3_TIMER | DMA_CH_VALID,

},

[DMACH_I2S_IN] = {

.name            = "i2s-sdi",

.channels[1]   = S3C2410_DCON_CH1_I2SSDI | DMA_CH_VALID,

.channels[2]   = S3C2410_DCON_CH2_I2SSDI | DMA_CH_VALID,

.hw_addr.from       = S3C2410_PA_IIS + S3C2410_IISFIFO,

},

[DMACH_I2S_OUT] = {

.name            = "i2s-sdo",

.channels[2]   = S3C2410_DCON_CH2_I2SSDO | DMA_CH_VALID,

.hw_addr.to    = S3C2410_PA_IIS + S3C2410_IISFIFO,

},

[DMACH_USB_EP1] = {

.name            = "usb-ep1",

.channels[0]   = S3C2410_DCON_CH0_USBEP1 | DMA_CH_VALID,

},

[DMACH_USB_EP2] = {

.name            = "usb-ep2",

.channels[1]   = S3C2410_DCON_CH1_USBEP2 | DMA_CH_VALID,

},

[DMACH_USB_EP3] = {

.name            = "usb-ep3",

.channels[2]   = S3C2410_DCON_CH2_USBEP3 | DMA_CH_VALID,

},

[DMACH_USB_EP4] = {

.name            = "usb-ep4",

.channels[3]   =S3C2410_DCON_CH3_USBEP4 | DMA_CH_VALID,

},

};

一大堆东西 , 我们还是来看这个结构的注释吧

Include/asm-arm/plat-s3c24xx/dma.h:

/* struct s3c24xx_dma_map

*

* this holds the mapping information for the channel selected

* to be connected to the specified device

*/

// 保存了一些被选择使用的 channel 和规定的设备间的一些 map 信息 . 具体到了使用的时候就会明白了

struct s3c24xx_dma_map {

const char             *name;

struct s3c24xx_dma_addr  hw_addr;

unsigned long        channels[S3C2410_DMA_CHANNELS];

};

Ok, 这样就把 s3c2410_dma_add 函数分析完了 , 到这里把每个 channel 的各种信息包括各 channel 的寄存器地址 , 中断号 , 跟设备的关系等信息都保存好了 ,  但是虽然每个 channel 都初始化好了 , 但是还记得吗 , 到目前为址 , 我们仅仅是向系统注册了一个虚拟的设备 , 真真的 DMA 设备还没注册进系统呢 ,  因此接下来就是要注册 DMA 设备了 , 在哪呢 ?

Arch/arm/plat-s3c24xx/dma.c:

static int __init s3c24xx_dma_sysdev_register(void)

{

struct s3c2410_dma_chan *cp = s3c2410_chans;  // 这个全局变量里已经保存了 channel 信息哦

int channel, ret;

// 对每个 channel 操作

for (channel = 0; channel < dma_channels; cp++, channel++) {

cp->dev.cls = &dma_sysclass;  // 指定 class 为 dma_sysclass

cp->dev.id  = channel;  //channel 号

ret = sysdev_register(&cp->dev);  // 注册设备

if (ret) {

printk(KERN_ERR "error registering dev for dma %d/n",

channel);

return ret;

}

}

return 0;

}

late_initcall(s3c24xx_dma_sysdev_register);  // 注意这行 , 它会在初始化完毕后被调用 ,

这个函数把所有的 channel 注册到 dma_sysclass 类下 , 我们前面看到注册设备时会调用该类的 add 函数 , 还好这里的 dma_sysclass 类没有 add 函数 , 我们可以轻松下了 .

Ok, 到这里 DMA 设备算是全部准备好了 , 可以随时被请求使用了 , 到这里我们总结一下 :

Arch/arm/mach-s3c2410/dma.c 下的代码主要是跟具体板子相关的代码 , 而真正核心的代码都在

Arch/arm/plat-s3c24xx/dma.c 下 , 因此如果我们有块跟 2410 类似的板子的话 , 主要实现的就是

Arch/arm/mach-s3c2410/dma.c 这个文件了 ,

同时我们也不难推测 , 使用 DMA 的函数应该都在 Arch/arm/plat-s3c24xx/dma.c 下 . 没错 , 说的更具体些就是这个文件下被 EXPORT_SYMBOL 出来的函数都是提供给外部使用的 , 也就是其他部分使用 DMA 的接口 . 知道了这些我们接着来分析这些被 EXPORT_SYMBOL 的函数吧 .

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_getposition

*

* returns the current transfer points for the dma source and destination

*/

int s3c2410_dma_getposition(dmach_t channel, dma_addr_t *src, dma_addr_t *dst)

{

// 获取保存该 channel 信息的对象 , 初始化的时候讲过
struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);

if (chan == NULL)

return -EINVAL;

if (src != NULL)   // 获取源地址

*src = dma_rdreg(chan, S3C2410_DMA_DCSRC);

if (dst != NULL)  // 获取目的地址

*dst = dma_rdreg(chan, S3C2410_DMA_DCDST);

return 0;

}

EXPORT_SYMBOL(s3c2410_dma_getposition);

这个函数获取某个 channel 当前正在传输的源地址和目的地址 . 主要就是通过读该 channel 的源和目的寄存器获得的 . S3C2410_DMA_DCSRC, S3C2410_DMA_DCDST 就是源和目的的偏移地址 . 可参考 2410 的 datasheet.  dma_rdreg 就是读寄存器 .

Arch/arm/plat-s3c24xx/dma.c:

#define dma_rdreg(chan, reg) readl((chan)->regs + (reg))

接着看下一个 export 的函数

/* s3c2410_dma_devconfig

*

* configure the dma source/destination hardware type and address

*

* source:    S3C2410_DMASRC_HW: source is hardware

*            S3C2410_DMASRC_MEM: source is memory

*

* hwcfg:     the value for xxxSTCn register,

*            bit 0: 0=increment pointer, 1=leave pointer

*            bit 1: 0=source is AHB, 1=source is APB

*

* devaddr:   physical address of the source

*/

Arch/arm/plat-s3c24xx/dma.c:

int s3c2410_dma_devconfig(int channel,

enum s3c2410_dmasrc source,

int hwcfg,

unsigned long devaddr)

{

// 获取保存该 channel 信息的对象 , 初始化的时候讲过

struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);

if (chan == NULL)

return -EINVAL;

pr_debug("%s: source=%d, hwcfg=%08x, devaddr=%08lx/n",

__FUNCTION__, (int)source, hwcfg, devaddr);

chan->source = source;  // 保存 DMA 源

chan->dev_addr = devaddr;   // 保存源地址

// 根据不同的 DMA 源来初始化 DMA channel

switch (source) {

case S3C2410_DMASRC_HW:

/* source is hardware */

pr_debug("%s: hw source, devaddr=%08lx, hwcfg=%d/n",

__FUNCTION__, devaddr, hwcfg);

dma_wrreg(chan, S3C2410_DMA_DISRCC, hwcfg & 3);

dma_wrreg(chan, S3C2410_DMA_DISRC,  devaddr);  // 源地址

dma_wrreg(chan, S3C2410_DMA_DIDSTC, (0<<1) | (0<<0));

chan->addr_reg = dma_regaddr(chan, S3C2410_DMA_DIDST);

return 0;

case S3C2410_DMASRC_MEM:

/* source is memory */

pr_debug( "%s: mem source, devaddr=%08lx, hwcfg=%d/n",

__FUNCTION__, devaddr, hwcfg);

dma_wrreg(chan, S3C2410_DMA_DISRCC, (0<<1) | (0<<0));

dma_wrreg(chan, S3C2410_DMA_DIDST,  devaddr);

dma_wrreg(chan, S3C2410_DMA_DIDSTC, hwcfg & 3);

chan->addr_reg = dma_regaddr(chan, S3C2410_DMA_DISRC);

return 0;

}

printk(KERN_ERR "dma%d: invalid source type (%d)/n", channel, source);

return -EINVAL;

}

EXPORT_SYMBOL(s3c2410_dma_devconfig);

这个函数用来配置某个 channel 的源的类型及源地址 , 然后为某种源设置好地址增长方式 , 具体寄存器含义参考 2410 datasheet, 2410 下 DMA 的各种操作模式可参考我的另一篇文章 .

Arch/arm/plat-s3c24xx/dma.c:

int s3c2410_dma_set_buffdone_fn(dmach_t channel, s3c2410_dma_cbfn_t rtn)

{

struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);

if (chan == NULL)

return -EINVAL;

pr_debug("%s: chan=%p, callback rtn=%p/n", __FUNCTION__, chan, rtn);

chan->callback_fn = rtn;   // 设置回调函数

return 0;

}

EXPORT_SYMBOL(s3c2410_dma_set_buffdone_fn);

该函数主要为某个 channel 设置一个 done 的回调函数 . 该回调函数会在传输完成后被调用 .

Arch/arm/plat-s3c24xx/dma.c:

/* do we need to protect the settings of the fields from

* irq?

*/

int s3c2410_dma_set_opfn(dmach_t channel, s3c2410_dma_opfn_t rtn)

{

struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);

if (chan == NULL)

return -EINVAL;

pr_debug("%s: chan=%p, op rtn=%p/n", __FUNCTION__, chan, rtn);

chan->op_fn = rtn;

return 0;

}

EXPORT_SYMBOL(s3c2410_dma_set_opfn);

该函数主要为某个 channel 设置一个操作的回调函数 . 该回调函数会在操作该 channel 时被调用 ( 有哪些操作会在 s3c2410_dma_ctrl 里看到 )

Arch/arm/plat-s3c24xx/dma.c:

int s3c2410_dma_setflags(dmach_t channel, unsigned int flags)

{

struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);

if (chan == NULL)

return -EINVAL;

pr_debug("%s: chan=%p, flags=%08x/n", __FUNCTION__, chan, flags);

chan->flags = flags;   // 设置标记

return 0;

}

EXPORT_SYMBOL(s3c2410_dma_setflags);

该函数主要为某个 channel 设置一个标记 , 标记有 :

Include/asm-arm/arch-s3c2410/dma.h:

/* flags */

#define S3C2410_DMAF_SLOW         (1<<0)   /* slow, so don't worry about

* waiting for reloads */

#define S3C2410_DMAF_AUTOSTART    (1<<1)   /* auto-start if buffer queued */

我们会在后面看到 flag 的使用

Arch/arm/plat-s3c24xx/dma.c:

/* DMA configuration for each channel

*

* DISRCC -> source of the DMA (AHB,APB)

* DISRC  -> source address of the DMA

* DIDSTC -> destination of the DMA (AHB,APD)

* DIDST  -> destination address of the DMA

*/

/* s3c2410_dma_config

*

* xfersize:     size of unit in bytes (1,2,4)

* dcon:         base value of the DCONx register

*/

int s3c2410_dma_config(dmach_t channel,

int xferunit,

int dcon)

{

struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);

pr_debug("%s: chan=%d, xfer_unit=%d, dcon=%08x/n",

__FUNCTION__, channel, xferunit, dcon);

if (chan == NULL)

return -EINVAL;

pr_debug("%s: Initial dcon is %08x/n", __FUNCTION__, dcon);

dcon |= chan->dcon & dma_sel.dcon_mask;

pr_debug("%s: New dcon is %08x/n", __FUNCTION__, dcon);

// 设置每个传输单元的大小

switch (xferunit) {

case 1:

dcon |= S3C2410_DCON_BYTE;

break;

case 2:

dcon |= S3C2410_DCON_HALFWORD;

break;

case 4:

dcon |= S3C2410_DCON_WORD;

break;

default:

pr_debug("%s: bad transfer size %d/n", __FUNCTION__, xferunit);

return -EINVAL;

}

dcon |= S3C2410_DCON_HWTRIG;   // 硬件请求模式

dcon |= S3C2410_DCON_INTREQ;   // 打开中断

pr_debug("%s: dcon now %08x/n", __FUNCTION__, dcon);

// 保存配置到全局变量中

chan->dcon = dcon;

chan->xfer_unit = xferunit;

return 0;

}

EXPORT_SYMBOL(s3c2410_dma_config);

该函数主要用来配置某个 channel 的请求模式 , 传输单元大小等 . 从中可以看出目前只支持硬件请求模式

Arch/arm/plat-s3c24xx/dma.c:

int

s3c2410_dma_ctrl(dmach_t channel, enum s3c2410_chan_op op)

{

struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);

if (chan == NULL)

return -EINVAL;

switch (op) {

case S3C2410_DMAOP_START:

return s3c2410_dma_start(chan);   // 开始一个 DMA 传输

case S3C2410_DMAOP_STOP:

return s3c2410_dma_dostop(chan);  // 停止一个 DMA 传输

case S3C2410_DMAOP_PAUSE:

case S3C2410_DMAOP_RESUME:

return -ENOENT;

case S3C2410_DMAOP_FLUSH:

return s3c2410_dma_flush(chan);  //

case S3C2410_DMAOP_STARTED:   // 指示传输开始

return s3c2410_dma_started(chan);

case S3C2410_DMAOP_TIMEOUT:

return 0;

}

return -ENOENT;      /* unknown, don't bother */

}

EXPORT_SYMBOL(s3c2410_dma_ctrl);

OK, 这个函数主要就是用来启用 , 停止 DMA 操作了 ,  比较重要的一个函数 . 等分析完了 export 的接口后 , 我们在来逐个分析每个 DMA 操作 .

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_free

*

* release the given channel back to the system, will stop and flush

* any outstanding transfers, and ensure the channel is ready for the

* next claimant.

*

* Note, although a warning is currently printed if the freeing client

* info is not the same as the registrant's client info, the free is still

* allowed to go through.

*/

int s3c2410_dma_free(dmach_t channel, struct s3c2410_dma_client *client)

{

struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);

unsigned long flags;

if (chan == NULL)

return -EINVAL;

local_irq_save(flags);

if (chan->client != client) {

printk(KERN_WARNING "dma%d: possible free from different client (channel %p, passed %p)/n",

channel, chan->client, client);

}

/* sort out stopping and freeing the channel */

if (chan->state != S3C2410_DMA_IDLE) {  // 该 channel 正在使用中

pr_debug("%s: need to stop dma channel %p/n",

__FUNCTION__, chan);

/* possibly flush the channel */

s3c2410_dma_ctrl(channel, S3C2410_DMAOP_STOP);   // 停止该 channel

}

//reset 该 channel 的相关信息

chan->client = NULL;

chan->in_use = 0;

if (chan->irq_claimed)

free_irq(chan->irq, (void *)chan);  // 释放该中断

chan->irq_claimed = 0;

if (!(channel & DMACH_LOW_LEVEL))

dma_chan_map[channel] = NULL;

local_irq_restore(flags);

return 0;

}

EXPORT_SYMBOL(s3c2410_dma_free);

根据注释我们很清楚了 ,  该函数主要就是释放一个 channel, 使其处于 ready 状态 ,

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_request_dma

*

* get control of an dma channel

*/

int s3c2410_dma_request(unsigned int channel,

struct s3c2410_dma_client *client,

void *dev)

{

struct s3c2410_dma_chan *chan;

unsigned long flags;

int err;

pr_debug("dma%d: s3c2410_request_dma: client=%s, dev=%p/n",

channel, client->name, dev);

local_irq_save(flags);

// 获取空闲的 channel

chan = s3c2410_dma_map_channel(channel);

if (chan == NULL) {   // 无空闲 channel 则返回失败

local_irq_restore(flags);

return -EBUSY;

}

dbg_showchan(chan);

// 保存使用该 channel 的用户等信息

chan->client = client;

chan->in_use = 1;

if (!chan->irq_claimed) {   // 该中断没注册

pr_debug("dma%d: %s : requesting irq %d/n",

channel, __FUNCTION__, chan->irq);

chan->irq_claimed = 1;   // 标记注册

local_irq_restore(flags);

err = request_irq(chan->irq, s3c2410_dma_irq, IRQF_DISABLED,

client->name, (void *)chan);  // 注册该中断

local_irq_save(flags);

if (err) {  // 失败则 reset 该 channel

chan->in_use = 0;

chan->irq_claimed = 0;

local_irq_restore(flags);

printk(KERN_ERR "%s: cannot get IRQ %d for DMA %d/n",

client->name, chan->irq, chan->number);

return err;

}

chan->irq_enabled = 1;

}

local_irq_restore(flags);

/* need to setup */

pr_debug("%s: channel initialised, %p/n", __FUNCTION__, chan);

return 0;

}

EXPORT_SYMBOL(s3c2410_dma_request);

该函数主要就是为请求的用户找到一个空闲的 channel, 并把它分配给该用户 , 同时打开中断 , 保存相关信息 .

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_enqueue

*

* queue an given buffer for dma transfer.

*

* id         the device driver's id information for this buffer

* data       the physical address of the buffer data

* size       the size of the buffer in bytes

*

* If the channel is not running, then the flag S3C2410_DMAF_AUTOSTART

* is checked, and if set, the channel is started. If this flag isn't set,

* then an error will be returned.

*

* It is possible to queue more than one DMA buffer onto a channel at

* once, and the code will deal with the re-loading of the next buffer

* when necessary.

*/

int s3c2410_dma_enqueue(unsigned int channel, void *id,

dma_addr_t data, int size)

{

struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);

struct s3c2410_dma_buf *buf;

unsigned long flags;

if (chan == NULL)

return -EINVAL;

pr_debug("%s: id=%p, data=%08x, size=%d/n",

__FUNCTION__, id, (unsigned int)data, size);

// 从高速缓冲中分配一块 buffer 用于 DMA 传输 , dma_kmem 是我们在初始化的时候就创建好的

buf = kmem_cache_alloc(dma_kmem, GFP_ATOMIC);

if (buf == NULL) {

pr_debug("%s: out of memory (%ld alloc)/n",

__FUNCTION__, (long)sizeof(*buf));

return -ENOMEM;

}

//pr_debug("%s: new buffer %p/n", __FUNCTION__, buf);

//dbg_showchan(chan);

// 初始化这块要被传输的 buf

buf->next  = NULL;

buf->data  = buf->ptr = data;  // 指向要传输的 data

buf->size  = size;  // 传输大小

buf->id    = id;

buf->magic = BUF_MAGIC;

local_irq_save(flags);

if (chan->curr == NULL) {    // 当前 channel 没有在传输

/* we've got nothing loaded... */

pr_debug("%s: buffer %p queued onto empty channel/n",

__FUNCTION__, buf);

chan->curr = buf;   // 直接挂在 curr 上

chan->end  = buf;

chan->next = NULL;

} else {  // 当前 channel 正在传输

pr_debug("dma%d: %s: buffer %p queued onto non-empty channel/n",

chan->number, __FUNCTION__, buf);

if (chan->end == NULL)

pr_debug("dma%d: %s: %p not empty, and chan->end==NULL?/n",

chan->number, __FUNCTION__, chan);

// 把 buffer 挂到队列的最后面 , 并重设 end

chan->end->next = buf;

chan->end = buf;

}

/* if necessary, update the next buffer field */

if (chan->next == NULL)

chan->next = buf;

/* check to see if we can load a buffer */

if (chan->state == S3C2410_DMA_RUNNING) {  // 该 channel 正在运行

if (chan->load_state == S3C2410_DMALOAD_1LOADED && 1) {  // 已有 buf load 了

if (s3c2410_dma_waitforload(chan, __LINE__) == 0) {  // 等待 load

printk(KERN_ERR "dma%d: loadbuffer:"

"timeout loading buffer/n",

chan->number);

dbg_showchan(chan);

local_irq_restore(flags);

return -EINVAL;

}

}

while (s3c2410_dma_canload(chan) && chan->next != NULL) { // 检查能否 load

s3c2410_dma_loadbuffer(chan, chan->next);  //load buffer

}

} else if (chan->state == S3C2410_DMA_IDLE) {  // 该 channel 空闲着

if (chan->flags & S3C2410_DMAF_AUTOSTART) { // 如果设了自动启动标记 , 则直接启动该次传输

s3c2410_dma_ctrl(chan->number, S3C2410_DMAOP_START); // 启动传输

}

}

local_irq_restore(flags);

return 0;

}

EXPORT_SYMBOL(s3c2410_dma_enqueue);

该函数首先从先前创建的高速缓冲池中获取一个 buf, 并把要传输的 data 保存在该 buf 中 , 然后根据当前 channel 的运行状态来选择是 load 该 buf, 还是直接传输该 buf.

Channel 在运行过程中会有很多的状态 , 所有状态如下 :

Include/asm-arm/arch-s3c2410/dma.h:

/* enum s3c2410_dma_loadst

*

* This represents the state of the DMA engine, wrt to the loaded / running

* transfers. Since we don't have any way of knowing exactly the state of

* the DMA transfers, we need to know the state to make decisions on wether

* we can

*

* S3C2410_DMA_NONE

*

* There are no buffers loaded (the channel should be inactive)

*

* S3C2410_DMA_1LOADED

*

* There is one buffer loaded, however it has not been confirmed to be

* loaded by the DMA engine. This may be because the channel is not

* yet running, or the DMA driver decided that it was too costly to

* sit and wait for it to happen.

*

* S3C2410_DMA_1RUNNING

*

* The buffer has been confirmed running, and not finisged

*

* S3C2410_DMA_1LOADED_1RUNNING

*

* There is a buffer waiting to be loaded by the DMA engine, and one

* currently running.

*/

enum s3c2410_dma_loadst {

S3C2410_DMALOAD_NONE,

S3C2410_DMALOAD_1LOADED,

S3C2410_DMALOAD_1RUNNING,

S3C2410_DMALOAD_1LOADED_1RUNNING,

};

各种装态注释的很明显了 , 我就不再罗索了 .

Channel 运行时会有一个正在传输的 buf, 一个已经加载的 buf, 还有很多等待加载的 buf.

我们来把这个函数中调用的函数也逐个分析下 :

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_waitforload

*

* wait for the DMA engine to load a buffer, and update the state accordingly

*/

static int

s3c2410_dma_waitforload(struct s3c2410_dma_chan *chan, int line)

{

int timeout = chan->load_timeout; // 初始化时 load_timeout 被设成了 1 << 18

int took;

// 该函数只在 S3C2410_DMALOAD_1LOADED 状态下被调用

if (chan->load_state != S3C2410_DMALOAD_1LOADED) {

printk(KERN_ERR "dma%d: s3c2410_dma_waitforload() called in loadstate %d from line %d/n", chan->number, chan->load_state, line);

return 0;

}

if (chan->stats != NULL)

chan->stats->loads++;  // 更新统计信息

while (--timeout > 0) {

// 获取还剩的传输量 , 左移 (32-20) 只是把 [21:20] 位移调 , 因为它仅和 0 比较 , 所以无需确切的数据

if ((dma_rdreg(chan, S3C2410_DMA_DSTAT) << (32-20)) != 0) {

took = chan->load_timeout - timeout;  // 等待了这么长时间

// 保存统计信息 , 该函数更新最长 , 最短超时时间 , 并更新总超时时间

s3c2410_dma_stats_timeout(chan->stats, took);

switch (chan->load_state) {

case S3C2410_DMALOAD_1LOADED:

// 因为有数据在传输了 , 因此更新 channel 的状态 , 从这我们也能看到 , 一次只能有一个

//buf 被 load

chan->load_state = S3C2410_DMALOAD_1RUNNING;

break;

default:

printk(KERN_ERR "dma%d: unknown load_state in s3c2410_dma_waitforload() %d/n", chan->number, chan->load_state);

}

return 1;

}

}

if (chan->stats != NULL) {

chan->stats->timeout_failed++;

}

return 0;

}

该函数很简单 , 它等待已经 load 的 buf 被 start 传输 , 然后更新相关统计信息 , 也正因为 load 的 buf 被开始传输了 , 因此该函数完后 , 应该会有一个新的 buf 被 load. 至于原先 load 的 buf 是如何被 start 的 , 我们以后在看 .

接下来我们看 s3c2410_dma_canload 函数 :

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_canload

*

* work out if we can queue another buffer into the DMA engine

*/

static int

s3c2410_dma_canload(struct s3c2410_dma_chan *chan)

{

// 在这 2 个状态下是可以 load 的

if (chan->load_state == S3C2410_DMALOAD_NONE ||

chan->load_state == S3C2410_DMALOAD_1RUNNING)

return 1;

return 0;

}

跑完 s3c2410_dma_waitforload 后如果正确 , 则状态应该是 S3C2410_DMALOAD_1RUNNING, 所以这里就是可以加载了 ,   那当然要看加载函数了

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_loadbuffer

*

* load a buffer, and update the channel state

*/

static inline int

s3c2410_dma_loadbuffer(struct s3c2410_dma_chan *chan,

struct s3c2410_dma_buf *buf)

{

unsigned long reload;

pr_debug("s3c2410_chan_loadbuffer: loading buff %p (0x%08lx,0x%06x)/n",

buf, (unsigned long)buf->data, buf->size);

if (buf == NULL) {

dmawarn("buffer is NULL/n");

return -EINVAL;

}

/* check the state of the channel before we do anything */

// 状态错误 , 只能有 1 个 loaded 的 buf

if (chan->load_state == S3C2410_DMALOAD_1LOADED) {

dmawarn("load_state is S3C2410_DMALOAD_1LOADED/n");

}

// 状态错误 , 只能有 1 个 loaded 的 buf

if (chan->load_state == S3C2410_DMALOAD_1LOADED_1RUNNING) {

dmawarn("state is S3C2410_DMALOAD_1LOADED_1RUNNING/n");

}

/* it would seem sensible if we are the last buffer to not bother

* with the auto-reload bit, so that the DMA engine will not try

* and load another transfer after this one has finished...

*/

// 判断是否要自动加载后续的 buf, 如果有后续的 buf 则自动加载

if (chan->load_state == S3C2410_DMALOAD_NONE) {

pr_debug("load_state is none, checking for noreload (next=%p)/n",

buf->next);

reload = (buf->next == NULL) ? S3C2410_DCON_NORELOAD : 0;

} else {

//pr_debug("load_state is %d => autoreload/n", chan->load_state);

reload = S3C2410_DCON_AUTORELOAD;

}

if ((buf->data & 0xf0000000) != 0x30000000) {

dmawarn("dmaload: buffer is %p/n", (void *)buf->data);

}

writel(buf->data, chan->addr_reg);  // 写地址寄存器

// 不解释了 , 看寄存器说明吧

dma_wrreg(chan, S3C2410_DMA_DCON,

chan->dcon | reload | (buf->size/chan->xfer_unit));

chan->next = buf->next;  // 更新链表

/* update the state of the channel */

// 更新状态

switch (chan->load_state) {

case S3C2410_DMALOAD_NONE:

chan->load_state = S3C2410_DMALOAD_1LOADED;

break;

case S3C2410_DMALOAD_1RUNNING:

chan->load_state = S3C2410_DMALOAD_1LOADED_1RUNNING;

break;

default:

dmawarn("dmaload: unknown state %d in loadbuffer/n",

chan->load_state);

break;

}

return 0;

}

该函数主要是把要传输的数据的地址先存入寄存器中 , 等当前的传输完成后会根据时候 auto reload 的情况来确定是否开始这次的传输 .

OK, 到目前为止讲完了所有的 export 的函数 , 现在还剩下 dma 的操作函数和中断函数没讲了 , let’s go!

我们先看中断函数 , 该函数在一次传输完成后被调用

Arch/arm/plat-s3c24xx/dma.c:

static irqreturn_t

s3c2410_dma_irq(int irq, void *devpw)

{

struct s3c2410_dma_chan *chan = (struct s3c2410_dma_chan *)devpw;

struct s3c2410_dma_buf  *buf;

buf = chan->curr;  // 当前传输完毕的 buf

dbg_showchan(chan);

/* modify the channel state */

// 修改当前状态

switch (chan->load_state) {

case S3C2410_DMALOAD_1RUNNING:

/* TODO - if we are running only one buffer, we probably

* want to reload here, and then worry about the buffer

* callback */

chan->load_state = S3C2410_DMALOAD_NONE;

break;

case S3C2410_DMALOAD_1LOADED:

/* iirc, we should go back to NONE loaded here, we

* had a buffer, and it was never verified as being

* loaded.

*/

chan->load_state = S3C2410_DMALOAD_NONE;

break;

case S3C2410_DMALOAD_1LOADED_1RUNNING:

/* we'll worry about checking to see if another buffer is

* ready after we've called back the owner. This should

* ensure we do not wait around too long for the DMA

* engine to start the next transfer

*/

chan->load_state = S3C2410_DMALOAD_1LOADED;

break;

case S3C2410_DMALOAD_NONE:

printk(KERN_ERR "dma%d: IRQ with no loaded buffer?/n",

chan->number);

break;

default:

printk(KERN_ERR "dma%d: IRQ in invalid load_state %d/n",

chan->number, chan->load_state);

break;

}

if (buf != NULL) {

/* update the chain to make sure that if we load any more

* buffers when we call the callback function, things should

* work properly */

chan->curr = buf->next;   // 更新传输的 buf

buf->next  = NULL;

if (buf->magic != BUF_MAGIC) {

printk(KERN_ERR "dma%d: %s: buf %p incorrect magic/n",

chan->number, __FUNCTION__, buf);

return IRQ_HANDLED;

}

s3c2410_dma_buffdone(chan, buf, S3C2410_RES_OK);  //buf 传输完成后的操作

/* free resouces */

s3c2410_dma_freebuf(buf);  // 释放 buf, 我们看到传输前有申请 buf

} else {

}

/* only reload if the channel is still running... our buffer done

* routine may have altered the state by requesting the dma channel

* to stop or shutdown... */

/* todo: check that when the channel is shut-down from inside this

* function, we cope with unsetting reload, etc */

// 还有要传输的 buf, 则继续传输

if (chan->next != NULL && chan->state != S3C2410_DMA_IDLE) {

unsigned long flags;

switch (chan->load_state) {

case S3C2410_DMALOAD_1RUNNING:

/* don't need to do anything for this state */

break;

case S3C2410_DMALOAD_NONE:

/* can load buffer immediately */

break;

case S3C2410_DMALOAD_1LOADED:

if (s3c2410_dma_waitforload(chan, __LINE__) == 0) {  // 等待被传输

/* flag error? */

printk(KERN_ERR "dma%d: timeout waiting for load (%s)/n",

chan->number, __FUNCTION__);

return IRQ_HANDLED;

}

break;

case S3C2410_DMALOAD_1LOADED_1RUNNING:

goto no_load;

default:

printk(KERN_ERR "dma%d: unknown load_state in irq, %d/n",

chan->number, chan->load_state);

return IRQ_HANDLED;

}

local_irq_save(flags);

s3c2410_dma_loadbuffer(chan, chan->next);   // 加载下一个 buf

local_irq_restore(flags);

} else {  // 所有的传输完成

s3c2410_dma_lastxfer(chan);   // 完成处理工作

/* see if we can stop this channel.. */

if (chan->load_state == S3C2410_DMALOAD_NONE) {

pr_debug("dma%d: end of transfer, stopping channel (%ld)/n",

chan->number, jiffies);

s3c2410_dma_ctrl(chan->number | DMACH_LOW_LEVEL,

S3C2410_DMAOP_STOP);  // 停止 dma 传输

}

}

no_load:

return IRQ_HANDLED;

}

我们看到当传输队列中还有 buf 要传输时 , 没有看到 start 的操作 , 这是为什么呢 ? 因为在 load 的时候我们分析过 , 如果后续还有 buf 要传输 , 则自动加载运行 ,  所以这里没有必要手工 start.

s3c2410_dma_buffdone() 函数仅仅是调用前面注册的回调函数 , 这里不列出来了 .

s3c2410_dma_freebuf() 也很简单 , 就是把 buf 归还到缓冲池去 .

我们看下 s3c2410_dma_lastxfer

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_lastxfer

*

* called when the system is out of buffers, to ensure that the channel

* is prepared for shutdown.

*/

static inline void

s3c2410_dma_lastxfer(struct s3c2410_dma_chan *chan)

{

#if 0

pr_debug("dma%d: s3c2410_dma_lastxfer: load_state %d/n",

chan->number, chan->load_state);

#endif

switch (chan->load_state) {

case S3C2410_DMALOAD_NONE:

break;

case S3C2410_DMALOAD_1LOADED:

if (s3c2410_dma_waitforload(chan, __LINE__) == 0) {  // 等待加载的 buf 被执行

/* flag error? */

printk(KERN_ERR "dma%d: timeout waiting for load (%s)/n",

chan->number, __FUNCTION__);

return;

}

break;

case S3C2410_DMALOAD_1LOADED_1RUNNING:

/* I belive in this case we do not have anything to do

* until the next buffer comes along, and we turn off the

* reload */

return;

default:

pr_debug("dma%d: lastxfer: unhandled load_state %d with no next/n",

chan->number, chan->load_state);

return;

}

/* hopefully this'll shut the damned thing up after the transfer... */

// 清楚自动加载标记 , 因为无后续要传输的 buf, 所以要清这个标记

dma_wrreg(chan, S3C2410_DMA_DCON, chan->dcon | S3C2410_DCON_NORELOAD);

}

很简单的一个函数 , 这里不多说了 .

好了 , 到这个该着中分析操作函数了 .

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_start

*

* start a dma channel going

*/

static int s3c2410_dma_start(struct s3c2410_dma_chan *chan)

{

unsigned long tmp;

unsigned long flags;

pr_debug("s3c2410_start_dma: channel=%d/n", chan->number);

local_irq_save(flags);

if (chan->state == S3C2410_DMA_RUNNING) {  // 已经有 run 的了

pr_debug("s3c2410_start_dma: already running (%d)/n", chan->state);

local_irq_restore(flags);

return 0;

}

chan->state = S3C2410_DMA_RUNNING;  // 更新状态

/* check wether there is anything to load, and if not, see

* if we can find anything to load

*/

if (chan->load_state == S3C2410_DMALOAD_NONE) { // 没有加载过 buf

if (chan->next == NULL) {  // 没有 buf 要传送的

printk(KERN_ERR "dma%d: channel has nothing loaded/n",

chan->number);

chan->state = S3C2410_DMA_IDLE;

local_irq_restore(flags);

return -EINVAL;

}

s3c2410_dma_loadbuffer(chan, chan->next);  // 加载 buf, 加载状态也会相应更新

}

dbg_showchan(chan);

/* enable the channel */

if (!chan->irq_enabled) {

enable_irq(chan->irq);  // 使能中断

chan->irq_enabled = 1;

}

/* start the channel going */

// 启动 DMA 传输 ,

tmp = dma_rdreg(chan, S3C2410_DMA_DMASKTRIG);

tmp &= ~S3C2410_DMASKTRIG_STOP;

tmp |= S3C2410_DMASKTRIG_ON;

dma_wrreg(chan, S3C2410_DMA_DMASKTRIG, tmp);

pr_debug("dma%d: %08lx to DMASKTRIG/n", chan->number, tmp);

#if 0

/* the dma buffer loads should take care of clearing the AUTO

* reloading feature */

tmp = dma_rdreg(chan, S3C2410_DMA_DCON);

tmp &= ~S3C2410_DCON_NORELOAD;

dma_wrreg(chan, S3C2410_DMA_DCON, tmp);

#endif

s3c2410_dma_call_op(chan, S3C2410_DMAOP_START);  // 调用注册的 op 回调函数

dbg_showchan(chan);

/* if we've only loaded one buffer onto the channel, then chec

* to see if we have another, and if so, try and load it so when

* the first buffer is finished, the new one will be loaded onto

* the channel */

// 由于当前 load 的已经在运行了 , 因此如果还有要传输的 buf 则 load 进来

if (chan->next != NULL) {

if (chan->load_state == S3C2410_DMALOAD_1LOADED) {

// 等待该 buf 被运行 , 别忘了我们设了自动加载运行 .

if (s3c2410_dma_waitforload(chan, __LINE__) == 0) {

pr_debug("%s: buff not yet loaded, no more todo/n",

__FUNCTION__);

} else {

chan->load_state = S3C2410_DMALOAD_1RUNNING;

s3c2410_dma_loadbuffer(chan, chan->next);  // 加载 buf

}

} else if (chan->load_state == S3C2410_DMALOAD_1RUNNING) {

s3c2410_dma_loadbuffer(chan, chan->next); // 加载 buf

}

}

local_irq_restore(flags);

return 0;

}

整个启动流程就这样完了 .

Arch/arm/plat-s3c24xx/dma.c:

static int s3c2410_dma_dostop(struct s3c2410_dma_chan *chan)

{

unsigned long flags;

unsigned long tmp;

pr_debug("%s:/n", __FUNCTION__);

dbg_showchan(chan);

local_irq_save(flags);

s3c2410_dma_call_op(chan,  S3C2410_DMAOP_STOP);  // 通知用户该操作

// 停止 DMA 传输

tmp = dma_rdreg(chan, S3C2410_DMA_DMASKTRIG);

tmp |= S3C2410_DMASKTRIG_STOP;

//tmp &= ~S3C2410_DMASKTRIG_ON;

dma_wrreg(chan, S3C2410_DMA_DMASKTRIG, tmp);

#if 0

/* should also clear interrupts, according to WinCE BSP */

tmp = dma_rdreg(chan, S3C2410_DMA_DCON);

tmp |= S3C2410_DCON_NORELOAD;

dma_wrreg(chan, S3C2410_DMA_DCON, tmp);

#endif

// 更新状态

/* should stop do this, or should we wait for flush? */

chan->state      = S3C2410_DMA_IDLE;

chan->load_state = S3C2410_DMALOAD_NONE;

local_irq_restore(flags);

return 0;

}

该函数比较简单 , 接着看

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_flush

*

* stop the channel, and remove all current and pending transfers

*/

static int s3c2410_dma_flush(struct s3c2410_dma_chan *chan)

{

struct s3c2410_dma_buf *buf, *next;

unsigned long flags;

pr_debug("%s: chan %p (%d)/n", __FUNCTION__, chan, chan->number);

dbg_showchan(chan);

local_irq_save(flags);

if (chan->state != S3C2410_DMA_IDLE) {

pr_debug("%s: stopping channel.../n", __FUNCTION__ );

s3c2410_dma_ctrl(chan->number, S3C2410_DMAOP_STOP);  // 停调传输

}

buf = chan->curr;

if (buf == NULL)

buf = chan->next;

chan->curr = chan->next = chan->end = NULL;

if (buf != NULL) {

for ( ; buf != NULL; buf = next) {

next = buf->next;

pr_debug("%s: free buffer %p, next %p/n",

__FUNCTION__, buf, buf->next);

s3c2410_dma_buffdone(chan, buf, S3C2410_RES_ABORT);  // 通知用户中断了传输

s3c2410_dma_freebuf(buf);  // 释放 buf

}

}

dbg_showregs(chan);

s3c2410_dma_waitforstop(chan);

#if 0

/* should also clear interrupts, according to WinCE BSP */

{

unsigned long tmp;

tmp = dma_rdreg(chan, S3C2410_DMA_DCON);

tmp |= S3C2410_DCON_NORELOAD;

dma_wrreg(chan, S3C2410_DMA_DCON, tmp);

}

#endif

dbg_showregs(chan);

local_irq_restore(flags);

return 0;

}

该函数的作用就是中断所有的传输 , 并把所有队列中等待传输的 buf 都清掉 .

Arch/arm/plat-s3c24xx/dma.c:

static int s3c2410_dma_started(struct s3c2410_dma_chan *chan)

{

unsigned long flags;

local_irq_save(flags);

dbg_showchan(chan);

/* if we've only loaded one buffer onto the channel, then chec

* to see if we have another, and if so, try and load it so when

* the first buffer is finished, the new one will be loaded onto

* the channel */

// 看注释吧 , 不解释了

if (chan->next != NULL) {

if (chan->load_state == S3C2410_DMALOAD_1LOADED) {

if (s3c2410_dma_waitforload(chan, __LINE__) == 0) {

pr_debug("%s: buff not yet loaded, no more todo/n",

__FUNCTION__);

} else {

chan->load_state = S3C2410_DMALOAD_1RUNNING;

s3c2410_dma_loadbuffer(chan, chan->next);

}

} else if (chan->load_state == S3C2410_DMALOAD_1RUNNING) {

s3c2410_dma_loadbuffer(chan, chan->next);

}

}

local_irq_restore(flags);

return 0;

}

最后的这个函数就由大家自己分析吧 .

从 s3c2410_dma_config 函数可以看出 , 该驱动只支持硬件请求模式 , 而从 s3c2410_dma_devconfig 函数可以看出 , 该驱动只支持设备和 memory 之间的 DMA 传输 .

至于如何使用的问题 , 可以去代码里搜一下哪些地方调用了 export 出来的函数就懂了 , 2410 的板子上 PCM 会用到 DMA 传输 ,   使用流程为 :

s3c2410_dma_request ->

s3c2410_dma_devconfig ->

s3c2410_dma_config ->

s3c2410_dma_ctrl(prtd->params->channel, S3C2410_DMAOP_START);

当然一般还会注册回调函数的 .

到此为止整个 DMA 的操作流程都分析完了 , 希望对你有所帮助 ,

以后会写些 cache, mmu, write buffer 等方面的驱动分析 .


 
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息