您的位置:首页 > 运维架构 > Linux

基于Linux的I2C驱动组成结构

2011-08-15 16:10 573 查看
基于Linux的I2C驱动组成结构



Linux的I2C驱动架构

1. Linux的I2C驱动架构Linux中I2C总线的驱动分为两个部分,总线驱动(BUS)和设备驱动(DEVICE)。其中总线驱动的职责,是为系统中每个I2C总线增加相应的读写方法。但是总线驱动本身并不会进行任何的通讯,它只是存在在那里,等待设备驱动调用其函数。

设备驱动则是与挂在I2C总线上的具体的设备通讯的驱动。通过I2C总线驱动提供的函数,设备驱动可以忽略不同总线控制器的差异,不考虑其实现细节地与硬件设备通讯。

1.1 总线驱动在系统开机时,首先装载的是I2C总线驱动。一个总线驱动用于支持一条特定的I2C总线的读写。一个总线驱动通常需要两个模块,一个struct i2c_adapter和一个struct i2c_algorithm来描述:

/*
* The following structs are for those who like to implement new bus drivers:
* i2c_algorithm is the interface to a class of hardware solutions which can
* be addressed using the same bus algorithms - i.e. bit-banging or the PCF8584
* to name two of the most common.
*/
struct i2c_algorithm {
/* If an adapter algorithm can't do I2C-level access, set master_xfer
to NULL. If an adapter algorithm can do SMBus access, set
smbus_xfer. If set to NULL, the SMBus protocol is simulated
using common I2C messages */
/* master_xfer should return the number of messages successfully
processed, or a negative value on error */
int (*master_xfer)(struct i2c_adapter *adap,struct i2c_msg *msgs,
int num);
int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,
unsigned short flags, char read_write,
u8 command, int size, union i2c_smbus_data * data);

/* --- these optional/future use for some adapter types.*/
int (*slave_send)(struct i2c_adapter *,char*,int);
int (*slave_recv)(struct i2c_adapter *,char*,int);

/* --- ioctl like call to set div. parameters. */
int (*algo_control)(struct i2c_adapter *, unsigned int, unsigned long);

/* To determine what the adapter supports */
u32 (*functionality) (struct i2c_adapter *);
};


static struct i2c_adapter pb1550_board_adapter = {

name: "pb1550 adapter",

id: I2C_HW_AU1550_PSC,

algo: NULL,

algo_data: &pb1550_i2c_info,

inc_use: pb1550_inc_use,

dec_use: pb1550_dec_use,

client_register: pb1550_reg,

client_unregister: pb1550_unreg,

client_count: 0,

};

/*
* i2c_adapter is the structure used to identify a physical i2c bus along
* with the access algorithms necessary to access it.
*/
struct i2c_adapter {
struct module *owner;
unsigned int id;
unsigned int class;
struct i2c_algorithm *algo;/* the algorithm to access the bus	*/
void *algo_data;

/* --- administration stuff. */
int (*client_register)(struct i2c_client *);
int (*client_unregister)(struct i2c_client *);

/* data fields that are valid for all devices	*/
struct mutex bus_lock;
struct mutex clist_lock;

int timeout;
int retries;
struct device dev;		/* the adapter device */
struct class_device class_dev;	/* the class device */

int nr;
struct list_head clients;
struct list_head list;
char name[I2C_NAME_SIZE];
struct completion dev_released;
struct completion class_dev_released;
};


这个样例挂接了一个叫做“pb1550 adapter”的驱动。但这个模块并未提供读写函数,具体的读写方法由第二个模块,struct i2c_algorithm提供。

static struct i2c_algorithm au1550_algo = {

.name = "Au1550 algorithm",

.id = I2C_ALGO_AU1550,

.master_xfer = au1550_xfer,

.functionality = au1550_func,

};

i2c_adap->algo = &au1550_algo;

这个样例给上述总线驱动增加了读写“算法”。通常情况下每个I2C总线驱动都定义一个自己的读写算法,但鉴于有些总线使用相同的算法,因而可以共用同一套读写函数。本例中的驱动定义了自己的读写算法模块,起名叫“Au1550 algorithm”。

全部填妥后,通过调用:

i2c_add_adapter(i2c_adap);

将这两个模块注册到操作系统里,总线驱动就算装上了。对于AMD au1550,这部分已经由AMD提供了。

1.2 设备驱动如前所述,总线驱动只是提供了对一条总线的读写机制,本身并不会去做通信。通信是由I2C设备驱动来做的,设备驱动透过I2C总线同具体的设备进行通讯。一个设备驱动有两个模块来描述,struct i2c_driver和struct i2c_client。

当系统开机、I2C总线驱动装入完成后,就可以装入设备驱动了。首先装入如下结构:

static struct i2c_driver driver = {

.name = "i2c TV tuner driver",

.id = I2C_DRIVERID_TUNER,

.flags = I2C_DF_NOTIFY,

.attach_adapter = tuner_probe,

.detach_client = tuner_detach,

.command = tuner_command,

};

i2c_add_driver(&driver);

这个i2c_driver一旦装入完成,其中的attach_adapter函数就会被调用。在其中可以遍历系统中的每个i2c总线驱动,探测想要访问的设备:

static int tuner_probe(struct i2c_adapter *adap)

{

return i2c_probe(adap, &addr_data, tuner_attach);

}

注意探测可能会找到多个设备,因而不仅一个I2C总线可以挂多个不同类型的设备,一个设备驱动也可以同时为挂在多个不同I2C总线上的设备服务。

每当设备驱动探测到了一个它能支持的设备,它就创建一个struct i2c_client来标识这个设备:

new_client->addr = address;

new_client->adapter = adapter;

new_client->driver = &driver;

/* Tell the I2C layer a new client has arrived */

err = i2c_attach_client(new_client);

if (err)

goto error;

/*
* i2c_client identifies a single device (i.e. chip) that is connected to an
* i2c bus. The behaviour is defined by the routines of the driver. This
* function is mainly used for lookup & other admin. functions.
*/
struct i2c_client {
unsigned int flags;		/* div., see below		*/
unsigned short addr;		/* chip address - NOTE: 7bit 	*/
/* addresses are stored in the	*/
/* _LOWER_ 7 bits		*/
struct i2c_adapter *adapter;	/* the adapter we sit on	*/
struct i2c_driver *driver;	/* and our access routines	*/
int usage_count;		/* How many accesses currently  */
/* to the client		*/
struct device dev;		/* the device structure		*/
struct list_head list;
char name[I2C_NAME_SIZE];
struct completion released;
};


可见,一个i2c_client代表着位于adapter总线上,地址为address,使用driver来驱动的一个设备。它将总线驱动与设备驱动,以及设备地址绑定在了一起。一个i2c_client就代表着一个I2C设备。

当得到I2C设备后,就可以直接对此设备进行读写:

/*

* The master routines are the ones normally used to transmit data to devices

* on a bus (or read from them). Apart from two basic transfer functions to

* transmit one message at a time, a more complex version can be used to

* transmit an arbitrary number of messages without interruption.

*/

extern int i2c_master_send(struct i2c_client *,const char* ,int);

extern int i2c_master_recv(struct i2c_client *,char* ,int);

与通常意义上的读写函数一样,这两个函数对i2c_client指针指定的设备,读写int个char。返回值为读写的字节数。对于我们现有的SLIC的驱动,只要将最后要往总线上进行读写的数据引出传输到这两个函数中,移植工作就算完成了,我们将得到一个Linux版的I2C设备驱动。I2C总线使用方法研究(作者LUOFUCHONG)

前言:

记得以前曾研究过Linux内核下i2c子系统,了解了i2c总线上,适配器、设备驱动的注册过程与使用方法,详细请查看:

1、i2c总线上,适配器、设备驱动注册:

2、i2c总线使用:

最近因为项目的需要,又重新看了一遍linux下的i2c子系统,有了新的体会。俗话说,好记性不如烂笔头,还是记下来比较好,一来当作总结,二来希望起到启发后人的效果^_^

正文:

Linux的世界充斥着各种各样的想法,i2c子系统同样,新、旧架构并存。至于旧的架构,网上有非常详细的介绍,本人不打算再去重复,咱们直奔新的架构去。

Linux下的设备驱动,顾名思义,就是由设备和驱动来组成的,i2c总线上的设备驱动也不例外。

一、i2c设备的注册

第一步:

记得以前的i2c设备驱动,设备部分喜欢驱动运行的时候动态创建,新式的驱动倾向于向传统的linux下设备驱动看齐,采用静态定义的方式来注册设备,使用接口为:

int __init

i2c_register_board_info(int busnum,

struct i2c_board_info const *info, unsigned len)

{

int status;

mutex_lock(&__i2c_board_lock);

/* dynamic bus numbers will be assigned after the last static one */

if (busnum >= __i2c_first_dynamic_bus_num)

__i2c_first_dynamic_bus_num = busnum + 1;//????

for (status = 0; len; len--, info++) {

struct i2c_devinfo *devinfo;

devinfo = kzalloc(sizeof(*devinfo), GFP_KERNEL);//申请表示i2c设备的结构体空间

if (!devinfo) {

pr_debug("i2c-core: can't register boardinfo!\n");

status = -ENOMEM;

break;

}

/* 填写i2c设备描述结构 */

devinfo->busnum = busnum;

devinfo->board_info = *info;

list_add_tail(&devinfo->list, &__i2c_board_list);//添加到全局链表__i2c_board_list中

}

mutex_unlock(&__i2c_board_lock);

return status;

}

第二步:

系统初始化的时候,会根据板级i2c设备配置信息,创建i2c客户端设备(i2c_client),添加到i2c子系统中:

static void i2c_scan_static_board_info(struct i2c_adapter *adapter)

{

struct i2c_devinfo *devinfo;

mutex_lock(&__i2c_board_lock);

list_for_each_entry(devinfo, &__i2c_board_list, list) { //遍历全局链表__i2c_board_list

if (devinfo->busnum == adapter->nr

&& !i2c_new_device(adapter,

&devinfo->board_info))

printk(KERN_ERR "i2c-core: can't create i2c%d-%04x\n",

i2c_adapter_id(adapter),

devinfo->board_info.addr);

}

mutex_unlock(&__i2c_board_lock);

}

struct i2c_client *

i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)

{

struct i2c_client *client;

int status;

client = kzalloc(sizeof *client, GFP_KERNEL);//创建i2c_client设备

if (!client)

return NULL;

client->adapter = adap;

client->dev.platform_data = info->platform_data;

if (info->archdata)

client->dev.archdata = *info->archdata;

client->flags = info->flags;

client->addr = info->addr;

client->irq = info->irq;

strlcpy(client->name, info->type, sizeof(client->name));

/* a new style driver may be bound to this device when we

* return from this function, or any later moment (e.g. maybe

* hotplugging will load the driver module). and the device

* refcount model is the standard driver model one.

*/

status = i2c_attach_client(client);//接入设备到i2c总线上

if (status < 0) {

kfree(client);

client = NULL;

}

return client;

}

int i2c_attach_client(struct i2c_client *client)

{

struct i2c_adapter *adapter = client->adapter;

int res;

/* Check for address business */

res = i2c_check_addr(adapter, client->addr);//地址检测

if (res)

return res;

client->dev.parent = &client->adapter->dev;

client->dev.bus = &i2c_bus_type;

if (client->driver)

client->dev.driver = &client->driver->driver;

if (client->driver && !is_newstyle_driver(client->driver)) {

client->dev.release = i2c_client_release;

client->dev.uevent_suppress = 1;

} else

client->dev.release = i2c_client_dev_release;

snprintf(&client->dev.bus_id[0], sizeof(client->dev.bus_id),

"%d-%04x", i2c_adapter_id(adapter), client->addr);

res = device_register(&client->dev); //注册设备

if (res)

goto out_err;

mutex_lock(&adapter->clist_lock);

list_add_tail(&client->list, &adapter->clients);

mutex_unlock(&adapter->clist_lock);

dev_dbg(&adapter->dev, "client [%s] registered with bus id %s\n",

client->name, client->dev.bus_id);

if (adapter->client_register) {

if (adapter->client_register(client)) {

dev_dbg(&adapter->dev, "client_register "

"failed for client [%s] at 0x%02x\n",

client->name, client->addr);

}

}

return 0;

out_err:

dev_err(&adapter->dev, "Failed to attach i2c client %s at 0x%02x "

"(%d)\n", client->name, client->addr, res);

return res;

}

注:

特别要提一下的是这个“i2c_check_addr”,引用<<i2c 源代码情景分析>>里的话:“i2c 设备的7 位地址是就当前i2c 总线而言的,是“相对地址”。不同的i2c 总线上的设备可以使用相同的7 位地址,但是它们所在的i2c 总线不同。所以在系统中一个i2c 设备的“绝对地址”由二元组(i2c 适配器的ID 和设备在该总线上的7 位地址)表示。”,所以这个函数的作用主要是排除同一i2c总线上出现多个地址相同的设备。

二、驱动的注册:

第一步:

static inline int i2c_add_driver(struct i2c_driver *driver)

{

return i2c_register_driver(THIS_MODULE, driver);

}

int i2c_register_driver(struct module *owner, struct i2c_driver *driver)

{

int res;

/* Can't register until after driver model init */

if (unlikely(WARN_ON(!i2c_bus_type.p)))

return -EAGAIN;

/* new style driver methods can't mix with legacy ones */

if (is_newstyle_driver(driver)) { //呵呵,新旧架构的驱动可以从这里看出来

if (driver->attach_adapter || driver->detach_adapter

|| driver->detach_client) {

printk(KERN_WARNING

"i2c-core: driver [%s] is confused\n",

driver->driver.name);

return -EINVAL;

}

}

/* add the driver to the list of i2c drivers in the driver core */

driver->driver.owner = owner;

driver->driver.bus = &i2c_bus_type;

/* for new style drivers, when registration returns the driver core

* will have called probe() for all matching-but-unbound devices.

*/

res = driver_register(&driver->driver); //注册驱动

if (res)

return res;

mutex_lock(&core_lock);

pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name);

INIT_LIST_HEAD(&driver->clients);

/* Walk the adapters that are already present */

class_for_each_device(&i2c_adapter_class, NULL, driver,

__attach_adapter);

mutex_unlock(&core_lock);

return 0;

}

第二步:

还记得在第一部分,我们注册了一i2c设备,其总线类型为i2c_bus_type,现在我们又在这总线上注册一驱动,那不得了,满足了设备+驱动的条件,i2c_bus_type总线上探测函数要被执行了。

struct bus_type i2c_bus_type = {

.name = "i2c",

.dev_attrs = i2c_dev_attrs,

.match = i2c_device_match,

.uevent = i2c_device_uevent,

.probe = i2c_device_probe,

.remove = i2c_device_remove,

.shutdown = i2c_device_shutdown,

.suspend = i2c_device_suspend,

.resume = i2c_device_resume,

};

static int i2c_device_probe(struct device *dev)

{

struct i2c_client *client = to_i2c_client(dev);

struct i2c_driver *driver = to_i2c_driver(dev->driver);

int status;

if (!driver->probe || !driver->id_table)

return -ENODEV;

client->driver = driver;

if (!device_can_wakeup(&client->dev))

device_init_wakeup(&client->dev,

client->flags & I2C_CLIENT_WAKE);

dev_dbg(dev, "probe\n");

status = driver->probe(client, i2c_match_id(driver->id_table, client));//调用具体i2c设备驱动的探测函数

if (status)

client->driver = NULL;

return status;

}

转载:http://bbs.51soc.com/read.php?tid=45

来自: http://hi.baidu.com/socboy/blog/item/1ae693ec82ce4c3aadafd546.html
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: