您的位置:首页 > 运维架构 > Linux

ARM-Linux驱动--RTC(实时时钟)驱动分析

2011-07-04 22:18 579 查看
硬件平台:FL2440(S3C2440)

内核版本:Linux 2.6.28

主机平台:Ubuntu 11.04

内核版本:Linux 2.6.39

交叉编译器版本:arm-linux-gcc 3.4.1

原创作品,转载请标明出处http://blog.csdn.net/yming0221/article/details/6584285

1、实时时钟概述

实时时钟(RTC)单元可以在断电的情况下使用纽扣电池继续计时工作。RTC使用STRB/LDRB ARM操作传输二进制码十进制数的8位数据给CPU。其中的数据包括秒、分、时、日期、天、月、年的时间信息。可以执行报警功能。

2、实时时钟操作

下面是RTC模块的电路图



3、RTC寄存器介绍

实时时钟控制寄存器(RTCCON)-REAL TIME CLOCK CONTROL REGISTER





节拍时间计数寄存器(TICNT)-TICK TIME COUNT REGISTER



RTC报警控制寄存器(RTCALM)-RTC ALARM CONTROL REGISTER



报警秒数寄存器(ALMSEC)-ALARM SECOND DATA REGISTER



报警分钟计数寄存器(ALMMIN)-ALARM MIN DATA REGISTER



报警小时数据寄存器(ALMHOUR)-ALARM HOUR DATA REGISTER



报警日期数据寄存器(ALMDATE)-ALARM DATE DATA REGISTER



报警月数数据寄存器(ALMMON)-ALARM MON DATA REGISTER



报警年数数据寄存器(ALMYEAR)-ALARM YEAR DATA REGISTER



BCD数据寄存器的格式和报警寄存器结构相同,只是对应的地址不同。

BCD秒寄存器(BCDSEC)-BCD SECOND REGISTER 地址:0x57000070(L) 0x57000073(B)

BCD分寄存器(BCDMIN)-BCD MINUTE REGISTER 地址:0x57000074(L) 0x57000077(B)

BCD小时寄存器(BCDHOUR)-BCD HOUR REGISTER 地址:0x57000078(L) 0x5700007B(B)

BCD日期寄存器(BCDDATE)-BCD DATE REGISTER 地址:0x5700007C(L) 0x5700007F(B)

BCD日寄存器(BCDDAY)-BCD DAY REGISTER 地址:0x57000080(L) 0x57000083(B)

BCD月寄存器(BCDMON)-BCD MONTH REGISTER 地址:0x57000084(L) 0x57000087(B)

BCD年寄存器(BCDYEAR)-BCD YEAR REGISTER 地址:0x57000088(L) 0x5700008B(B)

4、驱动实例分析

为了使驱动更容易理解,现在这个RTC驱动只完成了计时功能,没有添加相应的报警功能,也没有添加电源管理的功能,缺少的功能今后完善。

下面先总体了解驱动:

首先是RTC驱动的结构体,在/include/linux/platform_device.h中,如下

struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);
int (*suspend)(struct platform_device *, pm_message_t state);
int (*suspend_late)(struct platform_device *, pm_message_t state);
int (*resume_early)(struct platform_device *);
int (*resume)(struct platform_device *);
struct pm_ext_ops *pm;
struct device_driver driver;
};
驱动中定义对应的结构体

static struct platform_driver s3c2410_rtc_driver = {
.probe		= s3c_rtc_probe,//RTC探测函数
.remove		= __devexit_p(s3c_rtc_remove),//RTC移除函数
.driver		= {
.name	= "s3c2410-rtc",
.owner	= THIS_MODULE,
},
};
下面是驱动中驱动的初始化和退出函数

static int __init s3c_rtc_init(void)
{
printk(banner);
return platform_driver_register(&s3c2410_rtc_driver);
}

static void __exit s3c_rtc_exit(void)
{
platform_driver_unregister(&s3c2410_rtc_driver);
}
platform_driver_register()和platform_driver_unregister()函数在/drivers/base/platform.c中实现的。

可以看出,platform_driver_register()函数的作用就是为platform_driver中的driver中的probe、remove等提供接口函数

int platform_driver_register(struct platform_driver *drv)
{
drv->driver.bus = &platform_bus_type;
if (drv->probe)
drv->driver.probe = platform_drv_probe;
if (drv->remove)
drv->driver.remove = platform_drv_remove;
if (drv->shutdown)
drv->driver.shutdown = platform_drv_shutdown;
if (drv->suspend)
drv->driver.suspend = platform_drv_suspend;
if (drv->resume)
drv->driver.resume = platform_drv_resume;
if (drv->pm)
drv->driver.pm = &drv->pm->base;
return driver_register(&drv->driver);//注册老的驱动
}
void platform_driver_unregister(struct platform_driver *drv)
{
driver_unregister(&drv->driver);
}
接下来是RTC平台驱动探测函数s3c_rtc_probe,下面函数定义的时候使用了__devinit的作用是使编译器优化代码,将其放在和是的内存位置,减少内存占用和提高内核效率。

probe函数接收到plarform_device这个参数后,就需要从中提取出需要的信息。它一般会通过调用内核提供的platform_get_resource和platform_get_irq等函数来获得相关信息。如通过platform_get_resource获得设备的起始地址后,可以对其进行request_mem_region和ioremap等操作,以便应用程序对其进行操作。通过platform_get_irq得到设备的中断号以后,就可以调用request_irq函数来向系统申请中断。这些操作在设备驱动程序中一般都要完成。

static int __devinit s3c_rtc_probe(struct platform_device *pdev)
{
struct rtc_device *rtc;//定义rtc_device结构体,定义在/include/linux/rtc.h
struct resource *res;//定义资源结构体,定义在/include/linux/ioport.h
int ret;

pr_debug("%s: probe=%p\n", __func__, pdev);

/* find the IRQs */

s3c_rtc_tickno = platform_get_irq(pdev, 1);//在系统定义的平台设备中获取中断号
if (s3c_rtc_tickno < 0) {//异常处理
dev_err(&pdev->dev, "no irq for rtc tick\n");
return -ENOENT;
}

/* get the memory region */

res = platform_get_resource(pdev, IORESOURCE_MEM, 0);//获取RTC平台使用的IO资源
if (res == NULL) {
dev_err(&pdev->dev, "failed to get memory region resource\n");
return -ENOENT;
}
//申请内存区域,res是struct resource类型,见本函数后面
s3c_rtc_mem = request_mem_region(res->start,
res->end-res->start+1,
pdev->name);

if (s3c_rtc_mem == NULL) {//申请内存出错
dev_err(&pdev->dev, "failed to reserve memory region\n");
ret = -ENOENT;
goto err_nores;
}
//将寄存器地址映射成虚拟地址,以便访问
s3c_rtc_base = ioremap(res->start, res->end - res->start + 1);
if (s3c_rtc_base == NULL) {
dev_err(&pdev->dev, "failed ioremap()\n");
ret = -EINVAL;
goto err_nomap;
}

/* check to see if everything is setup correctly */

s3c_rtc_enable(pdev, 1);//对RTCCON寄存器设置,详情见下面的函数实现

pr_debug("s3c2410_rtc: RTCCON=%02x\n",
readb(s3c_rtc_base + S3C2410_RTCCON));

s3c_rtc_setfreq(&pdev->dev, 1);//详情见下面的函数实现

/* register RTC and exit */

rtc = rtc_device_register("s3c", &pdev->dev, &s3c_rtcops,
THIS_MODULE);//注册RTC为RTC设备,其中s3c_rtcops定义见下

if (IS_ERR(rtc)) {
dev_err(&pdev->dev, "cannot attach rtc\n");
ret = PTR_ERR(rtc);
goto err_nortc;
}

rtc->max_user_freq = 128;//设置RTC节拍时间计数寄存器TICNT的节拍时间计数值的用户最大相对值
//将RTC类的设备数据传递给系统设备,在/include/linux/platform_device.h中
//#define platform_set_drvdata(_dev,data)	dev_set_drvdata(&(_dev)->dev, (data)),该函数在/include/linux/device.h中定义,见本函数下面
platform_set_drvdata(pdev, rtc);
return 0;
//异常处理
err_nortc:
s3c_rtc_enable(pdev, 0);
iounmap(s3c_rtc_base);

err_nomap:
release_resource(s3c_rtc_mem);
err_nores:
return ret;
}
下面是/include/linux/ioport.h中struct resource结构体定义
struct resource {
resource_size_t start;
resource_size_t end;
const char *name;
unsigned long flags;
struct resource *parent, *sibling, *child;
};
这是dev_set_drvdata()的函数定义:

static inline void dev_set_drvdata(struct device *dev, void *data)
{
dev->driver_data = data;
}
接下来是在s3c_rtc_probe()函数用到的两个函数s3c_rtc_enable()和s3c_rtc_setfreq()

static void s3c_rtc_enable(struct platform_device *pdev, int en)
{
void __iomem *base = s3c_rtc_base;//__iomem的作用就是为了使编译器更好的优化编译
unsigned int tmp;

if (s3c_rtc_base == NULL)
return;
//en作为参数传递过来如果en==0,关闭电源前的情况
if (!en) {
tmp = readb(base + S3C2410_RTCCON);
writeb(tmp & ~S3C2410_RTCCON_RTCEN, base + S3C2410_RTCCON);//设置RTCCON寄存器,屏蔽RTC使能,可以参考数据手册中寄存器的相关定义

tmp = readb(base + S3C2410_TICNT);
writeb(tmp & ~S3C2410_TICNT_ENABLE, base + S3C2410_TICNT);//设置TICNT寄存器,屏蔽节拍时间中断使能
} else {
/* re-enable the device, and check it is ok */
//en!=0的情况,表示系统复位,重新使能RTC驱动
if ((readb(base+S3C2410_RTCCON) & S3C2410_RTCCON_RTCEN) == 0){//RTCCON第0位为0,将其设置为1,重新使能
dev_info(&pdev->dev, "rtc disabled, re-enabling\n");

tmp = readb(base + S3C2410_RTCCON);
writeb(tmp|S3C2410_RTCCON_RTCEN, base+S3C2410_RTCCON);
}

if ((readb(base + S3C2410_RTCCON) & S3C2410_RTCCON_CNTSEL)){
dev_info(&pdev->dev, "removing RTCCON_CNTSEL\n");

tmp = readb(base + S3C2410_RTCCON);
writeb(tmp& ~S3C2410_RTCCON_CNTSEL, base+S3C2410_RTCCON);//设置RTCCON第2位为0,设置BCD计数为混合BCD计数
}

if ((readb(base + S3C2410_RTCCON) & S3C2410_RTCCON_CLKRST)){
dev_info(&pdev->dev, "removing RTCCON_CLKRST\n");

tmp = readb(base + S3C2410_RTCCON);
writeb(tmp & ~S3C2410_RTCCON_CLKRST, base+S3C2410_RTCCON);//RTC时钟计数器复位
}
}
}
static int s3c_rtc_setfreq(struct device *dev, int freq)//设定节拍时间计数值
{
unsigned int tmp;

spin_lock_irq(&s3c_rtc_pie_lock);//获取自旋锁,对资源互斥访问

tmp = readb(s3c_rtc_base + S3C2410_TICNT) & S3C2410_TICNT_ENABLE;//节拍时间使能有效
tmp |= (128 / freq)-1;

writeb(tmp, s3c_rtc_base + S3C2410_TICNT);
spin_unlock_irq(&s3c_rtc_pie_lock);//解锁

return 0;
}
接下来是RTC设备类的操作。

下面是rtc_class_ops是RTC设备类在RTC驱动核心部分中定义的对RTC设备类进行操作的结构体,类似字符设备在驱动中的file_operations对字符设备进行操作的意思。该结构体被定义 在rtc.h中,对RTC的操作主要有打开、关闭、设置或获取时间、设置或获取报警、设置节拍时间计数值等等,该结构体内接口函数的实现都在下面

static const struct rtc_class_ops s3c_rtcops = {
.open		= s3c_rtc_open,
.release	= s3c_rtc_release,
.read_time	= s3c_rtc_gettime,
.set_time	= s3c_rtc_settime,
.irq_set_freq	= s3c_rtc_setfreq,
.irq_set_state	= s3c_rtc_setpie,
};
RTC打开设备函数s3c_rtc_open()

static int s3c_rtc_open(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);//从平台设备中获取RTC设备类的数据
struct rtc_device *rtc_dev = platform_get_drvdata(pdev);
int ret;

ret = request_irq(s3c_rtc_tickno, s3c_rtc_tickirq,
IRQF_DISABLED,  "s3c2410-rtc tick", rtc_dev);//申请中断

if (ret) {
dev_err(dev, "IRQ%d error %d\n", s3c_rtc_tickno, ret);
goto tick_err;
}

tick_err:
return ret;
}
RTC TICK节拍时间中断服务程序

static irqreturn_t s3c_rtc_tickirq(int irq, void *id)
{
struct rtc_device *rdev = id;

rtc_update_irq(rdev, 1, RTC_PF | RTC_IRQF);
return IRQ_HANDLED;
}
RTC关闭设备函数s3c_rtc_release()

static void s3c_rtc_release(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);//从平台设备中获取RTC设备类的数据

struct rtc_device *rtc_dev = platform_get_drvdata(pdev);

/* do not clear AIE here, it may be needed for wake */

s3c_rtc_setpie(dev, 0);//函数定义见下面
free_irq(s3c_rtc_tickno, rtc_dev);
}
s3c_rtc_setpie()函数,该函数主要作用就是根据参数设置TICNT寄存器的最高位,参数为0,禁止使能,参数为1,使能
static int s3c_rtc_setpie(struct device *dev, int enabled)
{
unsigned int tmp;

pr_debug("%s: pie=%d\n", __func__, enabled);

spin_lock_irq(&s3c_rtc_pie_lock);
tmp = readb(s3c_rtc_base + S3C2410_TICNT) & ~S3C2410_TICNT_ENABLE;//读取TICNT的值并将最高位清0

if (enabled)
tmp |= S3C2410_TICNT_ENABLE;

writeb(tmp, s3c_rtc_base + S3C2410_TICNT);//写入计算后新的值
spin_unlock_irq(&s3c_rtc_pie_lock);

return 0;
}
下面两个函数是设置和读取BCD寄存器的时间,逻辑很简单,只是读取和设置相应寄存器的值

static int s3c_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
{
unsigned int have_retried = 0;
void __iomem *base = s3c_rtc_base;

retry_get_time:
rtc_tm->tm_min  = readb(base + S3C2410_RTCMIN);
rtc_tm->tm_hour = readb(base + S3C2410_RTCHOUR);
rtc_tm->tm_mday = readb(base + S3C2410_RTCDATE);
rtc_tm->tm_mon  = readb(base + S3C2410_RTCMON);
rtc_tm->tm_year = readb(base + S3C2410_RTCYEAR);
rtc_tm->tm_sec  = readb(base + S3C2410_RTCSEC);

/* the only way to work out wether the system was mid-update
* when we read it is to check the second counter, and if it
* is zero, then we re-try the entire read
*/

if (rtc_tm->tm_sec == 0 && !have_retried) {
have_retried = 1;
goto retry_get_time;
}

pr_debug("read time %02x.%02x.%02x %02x/%02x/%02x\n",
rtc_tm->tm_year, rtc_tm->tm_mon, rtc_tm->tm_mday,
rtc_tm->tm_hour, rtc_tm->tm_min, rtc_tm->tm_sec);

rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);

rtc_tm->tm_year += 100;
rtc_tm->tm_mon -= 1;

return 0;
}

static int s3c_rtc_settime(struct device *dev, struct rtc_time *tm)
{
void __iomem *base = s3c_rtc_base;
int year = tm->tm_year - 100;

pr_debug("set time %02d.%02d.%02d %02d/%02d/%02d\n",
tm->tm_year, tm->tm_mon, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec);

/* we get around y2k by simply not supporting it */

if (year < 0 || year >= 100) {
dev_err(dev, "rtc only supports 100 years\n");
return -EINVAL;
}

writeb(bin2bcd(tm->tm_sec),  base + S3C2410_RTCSEC);
writeb(bin2bcd(tm->tm_min),  base + S3C2410_RTCMIN);
writeb(bin2bcd(tm->tm_hour), base + S3C2410_RTCHOUR);
writeb(bin2bcd(tm->tm_mday), base + S3C2410_RTCDATE);
writeb(bin2bcd(tm->tm_mon + 1), base + S3C2410_RTCMON);
writeb(bin2bcd(year), base + S3C2410_RTCYEAR);

return 0;
}
到这里RTC驱动的计时功能实现,报警功能还没有完成。下面是这个驱动源代码

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/rtc.h>
#include <linux/bcd.h>
#include <linux/clk.h>
#include <linux/log2.h>

#include <mach/hardware.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/plat-s3c/regs-rtc.h>

static struct resource *s3c_rtc_mem;

static void __iomem *s3c_rtc_base;

static int s3c_rtc_tickno = NO_IRQ;

static DEFINE_SPINLOCK(s3c_rtc_pie_lock);

static irqreturn_t s3c_rtc_tickirq(int irq, void *id) { struct rtc_device *rdev = id; rtc_update_irq(rdev, 1, RTC_PF | RTC_IRQF); return IRQ_HANDLED; }

/* Update control registers */
static void s3c_rtc_setaie(int to)
{
unsigned int tmp;

pr_debug("%s: aie=%d\n", __func__, to);

tmp = readb(s3c_rtc_base + S3C2410_RTCALM) & ~S3C2410_RTCALM_ALMEN;

if (to)
tmp |= S3C2410_RTCALM_ALMEN;

writeb(tmp, s3c_rtc_base + S3C2410_RTCALM);
}

static int s3c_rtc_setpie(struct device *dev, int enabled)
{
unsigned int tmp;

pr_debug("%s: pie=%d\n", __func__, enabled);

spin_lock_irq(&s3c_rtc_pie_lock);
tmp = readb(s3c_rtc_base + S3C2410_TICNT) & ~S3C2410_TICNT_ENABLE;

if (enabled)
tmp |= S3C2410_TICNT_ENABLE;

writeb(tmp, s3c_rtc_base + S3C2410_TICNT);
spin_unlock_irq(&s3c_rtc_pie_lock);

return 0;
}

static int s3c_rtc_setfreq(struct device *dev, int freq)
{
unsigned int tmp;

spin_lock_irq(&s3c_rtc_pie_lock);

tmp = readb(s3c_rtc_base + S3C2410_TICNT) & S3C2410_TICNT_ENABLE;
tmp |= (128 / freq)-1;

writeb(tmp, s3c_rtc_base + S3C2410_TICNT);
spin_unlock_irq(&s3c_rtc_pie_lock);

return 0;
}

/* Time read/write */

static int s3c_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm) { unsigned int have_retried = 0; void __iomem *base = s3c_rtc_base; retry_get_time: rtc_tm->tm_min = readb(base + S3C2410_RTCMIN); rtc_tm->tm_hour = readb(base + S3C2410_RTCHOUR); rtc_tm->tm_mday = readb(base + S3C2410_RTCDATE); rtc_tm->tm_mon = readb(base + S3C2410_RTCMON); rtc_tm->tm_year = readb(base + S3C2410_RTCYEAR); rtc_tm->tm_sec = readb(base + S3C2410_RTCSEC); /* the only way to work out wether the system was mid-update * when we read it is to check the second counter, and if it * is zero, then we re-try the entire read */ if (rtc_tm->tm_sec == 0 && !have_retried) { have_retried = 1; goto retry_get_time; } pr_debug("read time %02x.%02x.%02x %02x/%02x/%02x\n", rtc_tm->tm_year, rtc_tm->tm_mon, rtc_tm->tm_mday, rtc_tm->tm_hour, rtc_tm->tm_min, rtc_tm->tm_sec); rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec); rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min); rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour); rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday); rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon); rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year); rtc_tm->tm_year += 100; rtc_tm->tm_mon -= 1; return 0; } static int s3c_rtc_settime(struct device *dev, struct rtc_time *tm) { void __iomem *base = s3c_rtc_base; int year = tm->tm_year - 100; pr_debug("set time %02d.%02d.%02d %02d/%02d/%02d\n", tm->tm_year, tm->tm_mon, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec); /* we get around y2k by simply not supporting it */ if (year < 0 || year >= 100) { dev_err(dev, "rtc only supports 100 years\n"); return -EINVAL; } writeb(bin2bcd(tm->tm_sec), base + S3C2410_RTCSEC); writeb(bin2bcd(tm->tm_min), base + S3C2410_RTCMIN); writeb(bin2bcd(tm->tm_hour), base + S3C2410_RTCHOUR); writeb(bin2bcd(tm->tm_mday), base + S3C2410_RTCDATE); writeb(bin2bcd(tm->tm_mon + 1), base + S3C2410_RTCMON); writeb(bin2bcd(year), base + S3C2410_RTCYEAR); return 0; }

static int s3c_rtc_open(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rtc_device *rtc_dev = platform_get_drvdata(pdev);
int ret;

ret = request_irq(s3c_rtc_tickno, s3c_rtc_tickirq,
IRQF_DISABLED, "s3c2410-rtc tick", rtc_dev);

if (ret) {
dev_err(dev, "IRQ%d error %d\n", s3c_rtc_tickno, ret);
goto tick_err;
}

tick_err:
return ret;
}

static void s3c_rtc_release(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rtc_device *rtc_dev = platform_get_drvdata(pdev);

/* do not clear AIE here, it may be needed for wake */

s3c_rtc_setpie(dev, 0);
free_irq(s3c_rtc_tickno, rtc_dev);
}

static const struct rtc_class_ops s3c_rtcops = { .open = s3c_rtc_open, .release = s3c_rtc_release, .read_time = s3c_rtc_gettime, .set_time = s3c_rtc_settime, .irq_set_freq = s3c_rtc_setfreq, .irq_set_state = s3c_rtc_setpie, };
static void s3c_rtc_enable(struct platform_device *pdev, int en) {
void __iomem *base = s3c_rtc_base;
unsigned int tmp;

if (s3c_rtc_base == NULL)
return;

if (!en) {
tmp = readb(base + S3C2410_RTCCON);
writeb(tmp & ~S3C2410_RTCCON_RTCEN, base + S3C2410_RTCCON);

tmp = readb(base + S3C2410_TICNT);
writeb(tmp & ~S3C2410_TICNT_ENABLE, base + S3C2410_TICNT);
} else {
/* re-enable the device, and check it is ok */

if ((readb(base+S3C2410_RTCCON) & S3C2410_RTCCON_RTCEN) == 0){
dev_info(&pdev->dev, "rtc disabled, re-enabling\n");

tmp = readb(base + S3C2410_RTCCON);
writeb(tmp|S3C2410_RTCCON_RTCEN, base+S3C2410_RTCCON);
}

if ((readb(base + S3C2410_RTCCON) & S3C2410_RTCCON_CNTSEL)){
dev_info(&pdev->dev, "removing RTCCON_CNTSEL\n");

tmp = readb(base + S3C2410_RTCCON);
writeb(tmp& ~S3C2410_RTCCON_CNTSEL, base+S3C2410_RTCCON);
}

if ((readb(base + S3C2410_RTCCON) & S3C2410_RTCCON_CLKRST)){
dev_info(&pdev->dev, "removing RTCCON_CLKRST\n");

tmp = readb(base + S3C2410_RTCCON);
writeb(tmp & ~S3C2410_RTCCON_CLKRST, base+S3C2410_RTCCON);
}
}
}

static int __devexit s3c_rtc_remove(struct platform_device *dev)
{
struct rtc_device *rtc = platform_get_drvdata(dev);

platform_set_drvdata(dev, NULL);
rtc_device_unregister(rtc);

s3c_rtc_setpie(&dev->dev, 0);
s3c_rtc_setaie(0);

iounmap(s3c_rtc_base);
release_resource(s3c_rtc_mem);
kfree(s3c_rtc_mem);

return 0;
}

static int __devinit s3c_rtc_probe(struct platform_device *pdev)
{
struct rtc_device *rtc;
struct resource *res;
int ret;

pr_debug("%s: probe=%p\n", __func__, pdev);

/* find the IRQs */

s3c_rtc_tickno = platform_get_irq(pdev, 1);
if (s3c_rtc_tickno < 0) {
dev_err(&pdev->dev, "no irq for rtc tick\n");
return -ENOENT;
}

/* get the memory region */

res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL) {
dev_err(&pdev->dev, "failed to get memory region resource\n");
return -ENOENT;
}

s3c_rtc_mem = request_mem_region(res->start,
res->end-res->start+1,
pdev->name);

if (s3c_rtc_mem == NULL) {
dev_err(&pdev->dev, "failed to reserve memory region\n");
ret = -ENOENT;
goto err_nores;
}

s3c_rtc_base = ioremap(res->start, res->end - res->start + 1);
if (s3c_rtc_base == NULL) {
dev_err(&pdev->dev, "failed ioremap()\n");
ret = -EINVAL;
goto err_nomap;
}

/* check to see if everything is setup correctly */

s3c_rtc_enable(pdev, 1);

pr_debug("s3c2410_rtc: RTCCON=%02x\n",
readb(s3c_rtc_base + S3C2410_RTCCON));

s3c_rtc_setfreq(&pdev->dev, 1);

/* register RTC and exit */

rtc = rtc_device_register("s3c", &pdev->dev, &s3c_rtcops,
THIS_MODULE);

if (IS_ERR(rtc)) {
dev_err(&pdev->dev, "cannot attach rtc\n");
ret = PTR_ERR(rtc);
goto err_nortc;
}

rtc->max_user_freq = 128;

platform_set_drvdata(pdev, rtc);
return 0;

err_nortc:
s3c_rtc_enable(pdev, 0);
iounmap(s3c_rtc_base);

err_nomap:
release_resource(s3c_rtc_mem);
err_nores:
return ret;
}

static struct platform_driver s3c2410_rtc_driver = {
.probe = s3c_rtc_probe,
.remove = __devexit_p(s3c_rtc_remove),
.driver = {
.name = "s3c2410-rtc",
.owner = THIS_MODULE,
},
};

static char __initdata banner[] = "S3C24XX RTC, (c) 2004,2006 Simtec Electronics\n";

static int __init s3c_rtc_init(void) { printk(banner); return platform_driver_register(&s3c2410_rtc_driver); } static void __exit s3c_rtc_exit(void) { platform_driver_unregister(&s3c2410_rtc_driver); }

module_init(s3c_rtc_init);
module_exit(s3c_rtc_exit);

MODULE_DESCRIPTION("My s3c2440 RTC Driver");
MODULE_AUTHOR("YanMing - yming0221@gmail.com");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c2410-rtc");

Makefile文件

obj-m := rtc.o
KERNELDIR ?= /arm/linux-2.6.28.7-2440
PWD := $(shell pwd)
default:
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules
clean:
rm -f *.o *.ko *.order *.symvers

make后在目录下生成rtc.ko驱动,利用NFS挂在到目标板,insmod rtc.ko驱动就可以加载,执行hwclock命令,查看是否可以读取硬件的RTC。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: