您的位置:首页 > 运维架构 > Linux

linux设备模型之bus,device,driver分析一

2011-05-17 02:15 387 查看
===============================

本文系本站原创,欢迎转载!

转载请注明出处:http://blog.csdn.net/gdt_a20

===============================

内核的开发者将总线,设备,驱动这三者用软件思想抽象了出来,巧妙的建立了其间的关系,使之更形象化。结合前面所学的知识,总的来说其三者间的关系为bus有两条链表,分别用于挂接设备和驱动,指定了其自身bus的device或者driver最后都会分别连接到对应bus的这两条链表上,而总线又有其始端,为bus_kset,一个driver可以对应于几个设备,因此driver同样有其设备链表,用于挂接可以操作的设备,其自身也有bus挂接点,用于将自身挂接到对应bus(每个driver只属于一条总线),而对于device,一个设备只属于一条总线,只能有一个driver与其对应,因此对于device,都是单一的,一个driver挂接点,一个bus挂接点,device与bus相同的是都有始端,device为devices_kset,因此device的注册同时会出现在对应的bus目录和device总目录下。好了,下面就以源码为例分别分析一下bus,device,driver的注册过程。



一、bus的注册

bus的注册比较简单,首先来看一下bus的结构:

struct bus_type {
	const char		*name;                //名字
	struct bus_attribute	*bus_attrs;           //bus属性集
	struct device_attribute	*dev_attrs;           //device属性集
	struct driver_attribute	*drv_attrs;           //driver属性集
	int (*match)(struct device *dev, struct device_driver *drv);
	int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
	int (*probe)(struct device *dev);
	int (*remove)(struct device *dev);
	void (*shutdown)(struct device *dev);
	int (*suspend)(struct device *dev, pm_message_t state);
	int (*resume)(struct device *dev);
	const struct dev_pm_ops *pm;
	struct bus_type_private *p;                   //bus的私有成员
};
//其中重点看一下私有成员结构体:
struct bus_type_private {
	struct kset subsys;                           //bus内嵌的kset,代表其自身
	struct kset *drivers_kset;                    
	struct kset *devices_kset;
	struct klist klist_devices;                   //包含devices链表及其操作函数
	struct klist klist_drivers;                   //driver链表及其操作函数
	struct blocking_notifier_head bus_notifier;
	unsigned int drivers_autoprobe:1;              //匹配成功自动初始化标志
	struct bus_type *bus;                          
};


无论是bus,driver,还是device其本身特征都放在私有成员里,其注册时,都会申请并填充这个结构体,下***体分析一下bus的注册流程,从bus_register开始:

int bus_register(struct bus_type *bus)
{
	int retval;
	struct bus_type_private *priv;
	priv = kzalloc(sizeof(struct bus_type_private), GFP_KERNEL);    //进入时bus_type->bus_type_private为NULL
	if (!priv)                                                      //该函数主要是对其的设置
		return -ENOMEM;
	priv->bus = bus;                                                //私有成员的bus回指该bus
	bus->p = priv;                                                  //初始化bus->p,即其私有属性
	BLOCKING_INIT_NOTIFIER_HEAD(&priv->bus_notifier);
	retval = kobject_set_name(&priv->subsys.kobj, "%s", bus->name);  //设置该bus的名字,bus是kset的封装
	if (retval)
		goto out;
                                                      //bus_kset即为所有bus的总起始端点
                                                      //围绕bus内嵌的kset初始化,和kset的初始化时围绕
	priv->subsys.kobj.kset = bus_kset;                //kobj相似,没有parent时,就会用kset的kobj,此处即是
	priv->subsys.kobj.ktype = &bus_ktype;                    //属性操作级别统一为bus_ktype
	priv->drivers_autoprobe = 1;                                    //设置该标志,当有driver注册时,会自动匹配devices
                                                                    //上的设备并用probe初始化,
                                                                    //当有device注册时也同样找到  driver并会初始化
	retval = kset_register(&priv->subsys);                          //注册kset,创建目录结构,以及层次关系
	if (retval)
		goto out;
	retval = bus_create_file(bus, &bus_attr_uevent);                //当前bus目录下生成bus_attr_uevent属性文件
	if (retval)
		goto bus_uevent_fail;
	priv->devices_kset = kset_create_and_add("devices", NULL,       //初始化bus目录下的devices目录,里面级联了该bus下设备,
						 &priv->subsys.kobj);                    //仍然以kset为原型
	if (!priv->devices_kset) {
		retval = -ENOMEM;
		goto bus_devices_fail;
	}
	priv->drivers_kset = kset_create_and_add("drivers", NULL,       //初始化bus目录下的drivers目录,里面级联了该bus下设备的driver
						 &priv->subsys.kobj);
	if (!priv->drivers_kset) {
		retval = -ENOMEM;
		goto bus_drivers_fail;
	}
	klist_init(&priv->klist_devices, klist_devices_get, klist_devices_put);  //初始化klist_devices里的操作函数成员
	klist_init(&priv->klist_drivers, NULL, NULL);                            //klist_drivers里的操作函数置空
	retval = add_probe_files(bus);                                           //增加bus_attr_drivers_probe和bus_attr_drivers_autoprobe
	if (retval)                                                              //属性文件
		goto bus_probe_files_fail;
	retval = bus_add_attrs(bus);                                             //增加默认的属性文件
	if (retval)
		goto bus_attrs_fail;
	pr_debug("bus: '%s': registered/n", bus->name);
	return 0;
bus_attrs_fail:                                                               //以下为错误处理
	remove_probe_files(bus);
bus_probe_files_fail:
	kset_unregister(bus->p->drivers_kset);
bus_drivers_fail:
	kset_unregister(bus->p->devices_kset);
bus_devices_fail:
	bus_remove_file(bus, &bus_attr_uevent);
bus_uevent_fail:
	kset_unregister(&bus->p->subsys);
out:
	kfree(bus->p);
	bus->p = NULL;
	return retval;
}


由此可见,bus又是kset的封装,bus_register主要完成了其私有成员bus_type_private的初始化,并初始化了其下的两个目录devices和drivers,及其属性文件,bus有个自己的根目录也就是bus有个起始端点,是bus_kset,经过此番的注册,bus目录下将会出现我们注册的bus,并且其下会有device和driver两个子目录,代表它下面的driver和device链表。

二、driver的注册

下面看一下driver是怎么和bus关联起来的,首先看下driver的结构:

struct device_driver {
	const char		*name;            //名字
	struct bus_type		*bus;        //其所在的bus
	struct module		*owner;
	const char		*mod_name;	/* used for built-in modules */
	bool suppress_bind_attrs;	/* disables bind/unbind via sysfs */
#if defined(CONFIG_OF)
	const struct of_device_id	*of_match_table;
#endif
	int (*probe) (struct device *dev);        //匹配成功时可能会调用到的函数
	int (*remove) (struct device *dev);
	void (*shutdown) (struct device *dev);
	int (*suspend) (struct device *dev, pm_message_t state);
	int (*resume) (struct device *dev);
	const struct attribute_group **groups;
	const struct dev_pm_ops *pm;
	struct driver_private *p;                 //私有成员,表示driver
};
//重点看下driver的私有成员
struct driver_private {
	struct kobject kobj;                      //代表driver自身
	struct klist klist_devices;               //可以操控的设备链表
	struct klist_node knode_bus;              //挂接到bus的节点
	struct module_kobject *mkobj;             //模块相关
	struct device_driver *driver;             //回指该driver
};




如同bus一样,重点的仍是可以代表其自身的私有属性,下***体看一下driver的注册过程,从driver_register开始:

int driver_register(struct device_driver *drv)
{
	int ret;
	struct device_driver *other;
	BUG_ON(!drv->bus->p);
	if ((drv->bus->probe && drv->probe) ||           //driver和bus的同名操作函数如果同时存在,会出现警告
	    (drv->bus->remove && drv->remove) ||         //并且会优先选用bus的
	    (drv->bus->shutdown && drv->shutdown))
		printk(KERN_WARNING "Driver '%s' needs updating - please use "
			"bus_type methods/n", drv->name);
	other = driver_find(drv->name, drv->bus);        //进入bus的driver链表,确认该driver是否已经注册
	if (other) {
		put_driver(other);                            //找到了再减少引用计数,并且报错退出
		printk(KERN_ERR "Error: Driver '%s' is already registered, "
			"aborting.../n", drv->name);
		return -EBUSY;
	}
	ret = bus_add_driver(drv);                       //如果没有注册,那么把该driver加入所在bus
	if (ret)
		return ret;
	ret = driver_add_groups(drv, drv->groups);
	if (ret)
		bus_remove_driver(drv);
	return ret;
}
/****************************************************
× 跟踪一下driver_find(drv->name, drv->bus)
****************************************************/
struct device_driver *driver_find(const char *name, struct bus_type *bus)
{
	struct kobject *k = kset_find_obj(bus->p->drivers_kset, name);  //bus->p->drivers_kset代表bus下
	struct driver_private *priv;                                    //的driver目录,此处会遍历bus的    
                                                                    //driver链表,通过driver内嵌的
	if (k) {                                                        //kobj名字比较
		priv = to_driver(k);
		return priv->driver;                                 //如果找到同名的kobj那么返回该driver
	}
	return NULL;
}
//看一下kset_find_obj吧:
struct kobject *kset_find_obj(struct kset *kset, const char *name)
{
	struct kobject *k;
	struct kobject *ret = NULL;
	spin_lock(&kset->list_lock);
	list_for_each_entry(k, &kset->list, entry) {                   //遍历bus下的driver链表,如果
		if (kobject_name(k) && !strcmp(kobject_name(k), name)) {   //找到那么返回找到的kobj,并且把
			ret = kobject_get(k);                                  //该driver的kobj引用计数+1
			break;
		}
	}
	spin_unlock(&kset->list_lock);
	return ret;
}
/************************************************
× 再来跟踪一下driver_register里面的另外一个函数
× bus_add_driver(drv)
************************************************/
int bus_add_driver(struct device_driver *drv) 
{
	struct bus_type *bus;
	struct driver_private *priv;
	int error = 0;
	bus = bus_get(drv->bus);                                        //取得其所在bus的指针
	if (!bus)
		return -EINVAL;
	pr_debug("bus: '%s': add driver %s/n", bus->name, drv->name);   //开始初始化这个driver的私有成员,
                                                                    //和bus类似
	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
	if (!priv) {
		error = -ENOMEM;
		goto out_put_bus;
	}
	klist_init(&priv->klist_devices, NULL, NULL);                   //设备操作函数清空,设备链表初始化
	priv->driver = drv;                                             
	drv->p = priv;
	priv->kobj.kset = bus->p->drivers_kset;                          //kset指定到bus下面
	error = kobject_init_and_add(&priv->kobj, &driver_ktype, NULL,   //建立层次结构和属性文件
				     "%s", drv->name);
	if (error)
		goto out_unregister;
	if (drv->bus->p->drivers_autoprobe) {                            //bus的自动匹配如果设置为真,
		error = driver_attach(drv);                                  //那么到bus的devices上去匹配设备
		if (error)
			goto out_unregister;
	}
	klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers);        //把driver挂接到bus的driver链表
	module_add_driver(drv->owner, drv);
	error = driver_create_file(drv, &driver_attr_uevent);            //以下添加该driver相关属性文件
	if (error) {
		printk(KERN_ERR "%s: uevent attr (%s) failed/n",
			__func__, drv->name);
	}
	error = driver_add_attrs(bus, drv);
	if (error) {
		/* How the hell do we get out of this pickle? Give up */
		printk(KERN_ERR "%s: driver_add_attrs(%s) failed/n",
			__func__, drv->name);
	}
	if (!drv->suppress_bind_attrs) {
		error = add_bind_files(drv);
		if (error) {
			/* Ditto */
			printk(KERN_ERR "%s: add_bind_files(%s) failed/n",
				__func__, drv->name);
		}
	}
	kobject_uevent(&priv->kobj, KOBJ_ADD);
	return 0;
out_unregister:
	kobject_put(&priv->kobj);
	kfree(drv->p);
	drv->p = NULL;
out_put_bus:
	bus_put(bus);
	return error;
}
/****************************************************************
× 接下来就剩下最终要的匹配函数driver_attach(drv)了,我们来看一下:
****************************************************************/
int driver_attach(struct device_driver *drv)                            //遍历bus的设备链表找到
{                                                                       //合适的设备就调用__driver_attach,
	return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);      //NULL表示从头开始遍历
}  
//============
int bus_for_each_dev(struct bus_type *bus, struct device *start,
		     void *data, int (*fn)(struct device *, void *))
{
	struct klist_iter i;
	struct device *dev;
	int error = 0;
	if (!bus)
		return -EINVAL;
	klist_iter_init_node(&bus->p->klist_devices, &i,              //进入bus的devices链表
			     (start ? &start->p->knode_bus : NULL));
	while ((dev = next_device(&i)) && !error)                     //设备存在则调用fn即__driver_attach
		error = fn(dev, data);                                    //进行匹配
	klist_iter_exit(&i);
	return error;
} 
/*********************************************
× 接着看一下__driver_attach这个函数
*********************************************/
static int __driver_attach(struct device *dev, void *data)
{
	struct device_driver *drv = data;
	if (!driver_match_device(drv, dev))                //进行匹配
		return 0;
	if (dev->parent)	/* Needed for USB */
		device_lock(dev->parent);
	device_lock(dev);
	if (!dev->driver)                               //如果设备没有指定driver
		driver_probe_device(drv, dev);              //那么需要初始化匹配到的这个设备
	device_unlock(dev);
	if (dev->parent)
		device_unlock(dev->parent);
	return 0;
}
/*********************************************
× 又遇到两个分支,囧,先看一下driver_match_device 
*********************************************/ 
static inline int driver_match_device(struct device_driver *drv,      //bus的match存在就用bus的
                                      struct device *dev)             //,否则就直接匹配成功...
{                                                                     //match通常实现为首先扫描
	return drv->bus->match ? drv->bus->match(dev, drv) : 1;           //driver支持的id设备表,如果
}                                                                     //为NULL就用名字进行匹配
/************************************
× 再来看一下driver_probe_device这个函数 
************************************/ 
int driver_probe_device(struct device_driver *drv, struct device *dev)
{
	int ret = 0;
	if (!device_is_registered(dev))                              //判断该设备是否已经注册
		return -ENODEV;
	pr_debug("bus: '%s': %s: matched device %s with driver %s/n",
		 drv->bus->name, __func__, dev_name(dev), drv->name);
	pm_runtime_get_noresume(dev);
	pm_runtime_barrier(dev);
	ret = really_probe(dev, drv);                               //调用really_probe
	pm_runtime_put_sync(dev);
	return ret;
}
/************************************
× 看一下device_is_registered
************************************/
static inline int device_is_registered(struct device *dev)
{
	return dev->kobj.state_in_sysfs;                           //在sysfs中表示已经注册
}
/************************************
× 再看really_probe
************************************/
static int really_probe(struct device *dev, struct device_driver *drv)
{
	int ret = 0;
	atomic_inc(&probe_count);
	pr_debug("bus: '%s': %s: probing driver %s with device %s/n",
		 drv->bus->name, __func__, drv->name, dev_name(dev));
	WARN_ON(!list_empty(&dev->devres_head));
	dev->driver = drv;                                     //device的driver初始化成该driver
	if (driver_sysfs_add(dev)) {                      
                 printk(KERN_ERR "%s: driver_sysfs_add(%s) failed/n",
			__func__, dev_name(dev));
		goto probe_failed;
	}
                                                         //利用probe初始化设备
	if (dev->bus->probe) {                               //如果bus的probe存在就用bus的,
		ret = dev->bus->probe(dev);                      //如果bus的不存在driver的存在
		if (ret)                                         //再用driver的
			goto probe_failed;
	} else if (drv->probe) {
		ret = drv->probe(dev);
		if (ret)
			goto probe_failed;
	}
	driver_bound(dev);                              //调用driver_bound进行绑定
	ret = 1;
	pr_debug("bus: '%s': %s: bound device %s to driver %s/n",
		 drv->bus->name, __func__, dev_name(dev), drv->name);
	goto done;
probe_failed:
	devres_release_all(dev);
	driver_sysfs_remove(dev);
	dev->driver = NULL;
	if (ret != -ENODEV && ret != -ENXIO) {
		/* driver matched but the probe failed */
		printk(KERN_WARNING
		       "%s: probe of %s failed with error %d/n",
		       drv->name, dev_name(dev), ret);
	}
	/*
	 * Ignore errors returned by ->probe so that the next driver can try
	 * its luck.
	 */
	ret = 0;
done:
	atomic_dec(&probe_count);
	wake_up(&probe_waitqueue);
	return ret;
}
/**********************************
* 最后跟一下driver_bound(dev)这个函数
**********************************/
static void driver_bound(struct device *dev)
{
	if (klist_node_attached(&dev->p->knode_driver)) {                   //判断是否已经绑定
		printk(KERN_WARNING "%s: device %s already bound/n",
			__func__, kobject_name(&dev->kobj));
		return;
	}
	pr_debug("driver: '%s': %s: bound to device '%s'/n", dev_name(dev),
		 __func__, dev->driver->name);
	klist_add_tail(&dev->p->knode_driver, &dev->driver->p->klist_devices);  //将设备添加
                                                                            //到driver的链表
	if (dev->bus)
		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
					     BUS_NOTIFY_BOUND_DRIVER, dev);
}
//all end


总结一下,driver的注册,主要涉及将自身挂接到bus的driver链表,并将匹配到的设备加入自己的device链表,并且将匹配到的device的driver成员初始化为该driver,私有属性的driver节点也挂到driver的设备链表下,其中匹配函数是利用利用bus的match函数,该函数通常判断如果driver有id表,就查表匹配,如果没有就用driver和device名字匹配。当匹配成功后如果自动初始化标志允许则调用初始化函数probe,bus的probe优先级始终高于driver的。另外注意一点driver是没有总的起始端点的,driver不是可具体描述的事物。

由于篇幅比较长,device的分析放到下一篇《linux设备模型之bus,device,driver分析<二>》 ^_^!
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: