您的位置:首页 > 其它

嵌入式系统中Cache一致性问题分析

2010-09-07 11:02 246 查看
http://www.embedcity.com/article.php?id=240

Cache即高速缓冲存储器,是一种特殊的存储器子系统,其中复制了频繁使用的数据以利于快速访问。Cache的出现是基于两种因素:首先,是由于CPU
的速度和性能提高很快而主存速度较低且价格高,第二就是程序执行的局部性特点。因此,才将速度比较快而容量有限的SRAM构成Cache,目的在于尽可能
发挥CPU的高速度。很显然,要尽可能发挥CPU的高速度就必须用硬件实现其全部功能。但Cache的使用也带来了一致性的问题,在应用中应特别注意。本
文以三星公司的S3C44B0X为例,讲解Cache在嵌入式处理器中的使用问题。

  1.Cache一致性问题的发现

  本项目的目标板为:处理器采用ARM

芯片S3C44B0X,存储器采用2片Flash和1片SDRAM,在调试的时候输入采用键盘,输出采用显示器,用RS232串口实现通信。

  在项目的开发过程中,经软件仿真调试成功的程序,烧入目标板后,程序却发生异常中止。通过读存储器的内容发现,程序不能正常运行在目标板上,是因为存储器中写入的数据与程序编译生成的数据不一致,总是出现一些错误字节。

  经过一段时间的调试发现,只要在程序中禁止Cache的使用,存储器中写入的数据将不再发生错误,程序可以正常运行,但速度明显减慢。经过分析,认为问题是由于Cache数据与主存数据的不一致性造成的。

  Cache数据与主存数据不一致是指:在采用Cache的系统中,同样一个数据可能既存在于Cache中,也存在于主存中,两者数据相同则具有一致性,数据不相同就叫做不一致性。如果不能保证数据的一致性,那么,后续程序的运行就要出现问题。

  2.分析Cache的一致性问题

  要解释Cache的一致性问题,首先要了解Cache的工作模式。Cache的工作模式有两种:写直达模式(write?through)和写回模式
(writeback)。写直达模式是,每当CPU把数据写到Cache中时,Cache控制器会立即把数据写入主存对应位置。所以,主存随时跟踪
Cache的最新版本,从而也就不会有主存将新数据丢失这样的问题。此方法的优点是简单,缺点是每次Cache内容有更新,就要对主存进行写入操作,这样
会造成总线活动频繁。S3C44B0X中的Cache就是采用的写直达模式(write?through)。在写直达模式下,数据输出时,系统会把数据同
时写入高速缓冲存储器Cache和主存中,这样就保证了输出时高速缓冲存储器的一致性。但该模式下,却无法保证输入时的高速缓冲存储器的一致性。

下面再看一下Cache的组织方式。按照主存和Cache之间的映像关系,Cache有三种组织方式。全相联方式、直接映像方式和组相联方式。其中,直接映像方式的原理如图1所示。



  图1 直接映像示意图

  按照Cache的行数m,把主存分为n/m个区域,每个区中有m个存储块。各区中的0~(m-1)块一一对应地固定映射到Cache中L0~Lm-1
行。这样,标签只要给定区地址(区号),就能唯一确定Cache行与存储器的对应关系。当CPU发出存储器访问时,以存储器地址作为行索引,寻址到一高速
缓冲行,检测该行的标签。若标签与存储器的相应地址匹配,则Cache命中。该高速缓存行当前即为欲访问存储块的唯一映像。从上面的分析可以看出,在写直
达模式下,由于每次Cache内容有更新,就要对主存进行写入操作,造成总线活动频繁。在Cache命中的过程中,如果总线遇到干扰,就会出现数据不一致
的现象。

  3.Cache一致性问题的解决方法

  该问题可以从软件及硬件两方面着手解决。

  3.1 软件解决的方法

S3C44B0X的Cache提供完整的Cache使能和禁止操作模式。能够通过设置SYSCFG寄存器中CM域中的值为01或11来使能Cache(其
中,01为使能4KB Cache, 11为使能8 KB
Cache),而通过清除SYSCFG寄存器中[2:1]域为0来禁止Cache功能。用禁止Cache的方法来消除数据不一致性问题,具体代码如下:



另外,S3C44B0X还提供了2个不能Cache访问的区域(noncacheable
area)。每个区域要求两个Cache控制域,用来表明每一个不能Cache访问区域的起始和结束地址。在不能Cache访问的区域,当Cache没有
命中,一个读的时候,Cache不能更新。在已知影响到数据不一致的地址情况下,可以在使能Cache的条件下,用设定不能Cache访问区域
的方法,防止产生数据不一致现象。有时,如果数据区域被安排在不能Cache区域,程序执行速度更高,因为多数变量是不能重用的。对于不能重用的变量,刷
新16B的Cache存储器是浪费的。本系统中设定不能Cache访问的区域为0x2000000~0xc000000,就可以解决数据不一致问题。代码
如下:



  采用上述两种方法,排除了数据不一致性的问题。但一个高性能的系统是需要Cache的,禁止Cache的使用会大大降低系统的性能。所以,在嵌入式系统的设计中,还应从硬件方面考虑,从根本上防止数据不一致的产生。

  3.2 硬件的解决方法

  由于现在的嵌入式处理器,主频越来越高,地址、数据线越来越多,所以在硬件的设计和焊接过程中应特别注意高频干扰的问题。因为高频干扰可以引起信号的
不完整性,这些不完整的信号会引起总线传输过程中出现一些坏字节,所以高速PCB设计变得尤为重要。高速PCB设计中,对高速信号网络的特征与走线控制的
设计技术,已成为高速数字设备成功与否的关键。在设计中应注意下列问题:

① 在成本允许的条件下, PCB尽量采用多层板布线。

  ② 高频电路布线的引线最好采用全直线,需要转折时,可以用45°折线或圆弧转折。在高频电路中,满足这一要求可以减少高频信号对外的发射和相互间的耦合。

③ 高频电路器件引脚的引线层间的交替越少越好,过孔越少越好。据测,一个过孔可带来约0.5 pF的分布电容,减少过孔数量能显著提高速度。

④ 对特别重要的信号线或局部单元实施地线包围的措施,各类信号走线不能形成环路,地线也不能形成电流环路。

  ⑤ 每个集成电路块的附近应设置一个高频退耦电容。

  ⑥ 模拟电路和数字电路部分,应有各自独立的地线。

⑦ 高频电路布线要注意信号线近距离平行走线所引入的“交叉干扰”,若无法避免平行分布,可在平行信号线的反面布置大面积“地”来减少干扰。同一层内的平行走线几乎无法避免,但是在相邻的两个层,走线的方向务必取为相互垂直。

  在注意了上面的设计规则之后,制作出的PCB基本上可以满足高速信号的要求。

  最后,就是在焊接时要注意焊点一定要圆滑。因为焊点的尖峰会产生很强的高频干扰。

有了上述各条规则,就保证了在信号传输过程中,总线上不会出现不必要的干扰,防止了数据不一致的发生。

结束语:

Cache在命中的过程中会出现数据不一致的现象,造成Cache的一致性问题。本文以S3C44B0X为例,从软件及硬件两方面分析,提出了解决Cache的一致性问题的方法。在嵌入式系统的Cache应用中,有一定的通用性,具有借鉴意义。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: