您的位置:首页 > 运维架构 > Linux

200行C代码实现简单线程池【Linux】

2010-08-26 16:06 585 查看
原以为实现一个线程池一定是个规模和难度都是超大的项目。这阵子有些闲空,就复习了一下pthreads的知识。光理论复习不够的,还得上手写点东西才行。这就想着实现一个线程池试试看吧。没想到200行不到就出来了一个可用的东西。

基本想法是这样的:

1、预创建的线程通过mutex休眠在线程池中。这样,通过unlock该mutex就可以唤醒该线程了;

2、出于简单性的目标,一个线程池内的所有线程的属性都是相同的。这个属性在创建线程池可以指定;

3、一般来讲,线程池内的线程不能被取消、或者调用pthread_exit()退出。这些管理性工作是由线程池本身完成的。即,在使用线程池借出的线程时,函数返回应该只用return。

4、从线程池“借出”的线程,可以归还给线程池。实际上也必须归还给线程池,这样线程池可以完成最后的清理工作。

5、如果实在需要取消一个线程,那么好吧,只是别忘了告诉线程池你取消了它的手下。

#include "threadpool.h" /* #include了所有必要的系统头文件 */

#define THWK_F_CLEAN 1 /* 设置此标志着threadpool正在进行清理操作,此时线程退出。 */

#define THWK_F_RUNNING 2 /* 设置这个标志主要是为了避免一个race condition,后述。 */

struct thread_worker_arg {

void (*action)(void*); /* user programmer指定的实际函数 */

void *what; /* action的参数 */

};

struct thread_worker {

pthread_t id; /* just as its name */

struct thread_worker_arg arg; /* 用于给sleepy_wrapper()传送参数,后述。 */

pthread_mutex_t lock; /* 用于实现线程池内空闲线程的休眠,它实际上并不保护什么临界区。 */

struct thread_worker *next; /* 用于链表线程池内的其他线程 */

unsigned long long delay; /* 未用,计划用于测量调度延迟。 */

unsigned long flags; /* 标志,后述。 */

};

struct thread_pool {

pthread_mutex_t lock; /* 用于同步对于thread_pool自身的访问操作 */

struct thread_worker *first; /* 所有线程链接于此 */

int total; /* 总线程数 */

int current_nr; /* 池内空闲线程数 */

};

/* 未用,计划用于测量调度延迟。 */

inline unsigned long long get_ticks(void)

{

// __asm__ ("rdtsc");

return 0ULL;

}

/* 用于支持线程在被取消时的必要清理操作。 */

static void sleepy_wrapper_cleanup(void *voidp)

{

struct thread_worker *worker = voidp;

pthread_mutex_unlock(&worker->lock);

free(worker);

}

/* 这就是线程池内线程的执行函数了。 */

static void* sleepy_wrapper(void *voidp)

{

struct thread_worker *worker = voidp;

while (1) {

pthread_cleanup_push(sleepy_wrapper_cleanup, worker); /* 预设置上一个清理函数,防止线程取消时内存泄漏。 */

pthread_mutex_lock(&worker->lock); /* 空闲线程应该休眠于此,这个mutex在创建thread pool时就锁住了。或者本循环结束时锁住。 */

worker->delay = get_ticks() - worker->delay; /* 暂时无用。 */

if (THWK_F_CLEAN & worker->flags) /* 线程池正在清理本身,所以线程至此就退出了。 */

goto done; /* 你可能觉得这个goto用得有些多余,但如果不这样编译就会提示句法错误,因为pthread_cleanup_{push,pop}是用宏实现的!你可以参考一下它们的实现。 */

worker->flags |= THWK_F_RUNNING; /* 后述。 */

if (worker->arg.action) /* 进行线程实际的工作 */

worker->arg.action(worker->arg.what);

done:

pthread_mutex_unlock(&worker->lock); /* 解锁这个mutex,允许这个thread的下一次使用 */

pthread_cleanup_pop(0);

if (THWK_F_CLEAN & worker->flags) /* 清理线程池 */

break;

pthread_mutex_lock(&worker->lock); /* 先锁住这个锁,以让本循环开头的pthread_mutex_lock()使线程进入休眠。这个调用应该是成功的,否则就会引用deadlock。 */

worker->flags &= ~THWK_F_RUNNING; /* 设计这个标志的意义在于防止有线程激活操作在以上unlock/lock之间发生,如果这样的话,就会引起deadlock,激活操作的实现后述。 */

}

pthread_exit(0);

}

/* 无需废话的函数。 */

pthread_t thread_pool_rawid(struct thread_worker *worker)

{

return worker->id;

}

/* 如果线程被取消了,通知线程池忘记它,目前的实现很简单。*/

void thread_pool_forget(struct thread_pool *pool, struct thread_worker *worker)

{

pool->total--;

}

/* 线程激活操作 */

void thread_pool_activate(struct thread_worker *worker)

{

worker->delay = get_ticks();

while (thread_pool_is_running(worker)) /* 防止出现deadlock */

;

pthread_mutex_unlock(&worker->lock); /* 使sleepy_wrapper()内循环开头部分的lock()操作返回,即线程得以唤醒执行实际的action(what)。 */

}

/* 另一个无须废话的函数 */

int thread_pool_is_running(struct thread_worker *worker)

{

return (worker->flags & THWK_F_RUNNING);

}

/* 从线程池中借出一个线程,其实就是一个从链表头中摘出thread_worker的简单函数 */

int thread_pool_lend(struct thread_pool *pool, void (*action)(void*), void* what, struct thread_worker **worker)

{

if (!action || !pool || !worker)

return -EINVAL;

pthread_mutex_lock(&pool->lock);

*worker = pool->first;

if (worker) {

(*worker)->arg.action = action;

(*worker)->arg.what = what;

pool->first = (*worker)->next;

(*worker)->next = NULL;

pool->current_nr--;

}

pthread_mutex_unlock(&pool->lock);

return 0;

}

/* 向线程池里归还一个thread,头插法插入thread_worker链表。 */

int thread_pool_giveback(struct thread_pool *pool, struct thread_worker *worker)

{

if (!pool || !worker)

return -EINVAL;

while (thread_pool_is_running(worker))

;

pthread_mutex_lock(&pool->lock);

worker->next = pool->first;

pool->first = worker;

worker->arg.action = NULL;

worker->arg.what = NULL;

pool->current_nr++;

pthread_mutex_unlock(&pool->lock);

return 0;

}

/* 虽然有点长,但仍然是无须废话:线程池创建 */

struct thread_pool* thread_pool_create(int nr_to_create, pthread_attr_t *attr)

{

struct thread_pool *pool;

struct thread_worker *worker;

int i, chk;

if (!nr_to_create)

return NULL;

pool = malloc(sizeof(struct thread_pool));

if (!pool)

return NULL;

pool->first = NULL;

pool->total = 0;

pthread_mutex_init(&pool->lock, NULL);

for (i=0; i<nr_to_create; ++i) {

worker = malloc(sizeof(struct thread_worker));

if (!worker)

break;

memset(worker, 0, sizeof(struct thread_worker));

pthread_mutex_init(&worker->lock, NULL);

pthread_mutex_lock(&worker->lock);

chk = pthread_create(&worker->id, attr, sleepy_wrapper, (void*)worker);

if (chk) {

pthread_mutex_unlock(&worker->lock);

pthread_mutex_destroy(&worker->lock);

free(worker);

break;

}

worker->next = pool->first;

pool->first = worker;

}

pool->total = i;

pool->current_nr = i;

if (0 == i) {

pthread_mutex_destroy(&pool->lock);

free(pool);

pool = NULL;

}

return pool;

}

/* 清理线程池。 */

int thread_pool_clean(struct thread_pool *pool)

{

struct thread_worker *worker;

pthread_mutex_lock(&pool->lock);

if (pool->total != pool->current_nr) {

pthread_mutex_unlock(&pool->lock);

return -EBUSY;

}

while (NULL != (worker = pool->first)) {

worker->flags = THWK_F_CLEAN; /* this is =, rather than |= ! */

pthread_mutex_unlock(&worker->lock);

pthread_join(worker->id, NULL);

pool->first = worker->next;

pthread_mutex_destroy(&worker->lock);

free(worker);

}

pthread_mutex_unlock(&pool->lock);

pthread_mutex_destroy(&pool->lock);

free(pool);

return 0;

}

/* 这是一个使用例子。 */

/* 在我的P4双核机器上,可以比单线程版本快20%,但复杂性远高于20%! :( */

#include "threadpool.h"

unsigned long long sum(unsigned long long start, unsigned long long end)

{

unsigned long long sum;

sum = 0;

for (; start<=end; ++start)

sum += start;

return sum;

}

struct per_sum {

unsigned long long sum, start, end;

pthread_mutex_t lock;

pthread_cond_t cond;

};

void threaded_sum(void *voidp)

{

struct per_sum *per_sum = voidp;

printf("thread %p start/n", voidp);

if (!per_sum) {

// printf("per_sum == NULL/n");

return;

}

per_sum->sum = sum(per_sum->start, per_sum->end);

per_sum->start = per_sum->end = 0;

pthread_mutex_lock(&per_sum->lock);

printf("thread %p exit, end=%lld/n", voidp, per_sum->end);

pthread_cond_signal(&per_sum->cond);

pthread_mutex_unlock(&per_sum->lock);

}

int main(void)

{

#define NR_THREADS 2

struct thread_worker* workers[NR_THREADS];

struct per_sum per_sums[NR_THREADS];

struct thread_pool *pool;

int i;

unsigned long long start, end;

unsigned long long result = 0;

unsigned long long delta = 0x10ffffff;

// printf("mutli threading ... ");

pool = thread_pool_create(NR_THREADS, NULL);

if (!pool)

exit(-1);

for (i=0; i<NR_THREADS; ++i) {

if (pthread_mutex_init(&per_sums[i].lock, NULL)) {

printf("failed init mutex/n");

exit(3);

}

if (pthread_cond_init(&per_sums[i].cond, NULL)) {

printf("failed init cond/n");

exit(4);

}

if (thread_pool_lend(pool, threaded_sum, (void*)&per_sums[i], &workers[i])) {

printf("failed to lend thread %d/n", i);

exit(5);

}

}

start = 0;

/* activate threads */

for (i=0; i<NR_THREADS; i++) {

per_sums[i].start = start;

per_sums[i].end = per_sums[i].start + delta;

start = per_sums[i].end + 1;

thread_pool_activate(workers[i]);

}

for (i=0; i<NR_THREADS; i++) {

pthread_mutex_lock(&per_sums[i].lock);

while (per_sums[i].end != 0)

pthread_cond_wait(&per_sums[i].cond, &per_sums[i].lock);

result += per_sums[i].sum;

pthread_mutex_unlock(&per_sums[i].lock);

}

/* activate threads again */

for (i=0; i<NR_THREADS; i++) {

per_sums[i].start = start;

per_sums[i].end = per_sums[i].start + delta;

start = per_sums[i].end + 1;

thread_pool_activate(workers[i]);

}

end = per_sums[NR_THREADS-1].end;

for (i=0; i<NR_THREADS; i++) {

pthread_mutex_lock(&per_sums[i].lock);

while (per_sums[i].end != 0)

pthread_cond_wait(&per_sums[i].cond, &per_sums[i].lock);

result += per_sums[i].sum;

pthread_mutex_unlock(&per_sums[i].lock);

}

for (i=0; i<NR_THREADS; ++i) {

if (thread_pool_giveback(pool, workers[i])) {

printf("failed to giveback thread %d/n", i);

exit(6);

}

pthread_mutex_destroy(&per_sums[i].lock);

pthread_cond_destroy(&per_sums[i].cond);

}

thread_pool_clean(pool);

printf("sum = %lld/n/n", result);

return 0;

}

PS:
是在Linux写的这个程序。完善的话,比如可以根据系统负载调整线程池中线程的数量;增加更完整的性能测量功能,调试功能;提供更方便的线程属性设置接口;在Linux平台上,可以使用clone()提供更为灵活的资源策略,等等。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: